Janitza electronics GmbH Vor dem Polstück 6 35633 Lahnau, Deutschland Support Tel. +49 6441 9642-22 info@janitza.de | www.janitza.de

Power Analyser UMG 96RM-P UMG 96RM-CBM

Benutzerhandbuch und technische Daten

UMG 96RM-P

UMG 96RM-CBM

Inhaltsverzeichnis	
Allgemeines	4
Eingangskontrolle	8
Lieferbares Zubehör	9
Produktbeschreibung	10
Bestimmungsmäßiger Gebrauch	10
Leistungsmerkmale UMG 96RM-P/-CBM	12
Messverfahren	13
Bedienungskonzept	13
Netzanalysesoftware GridVis	14
Anschlussvarianten	14
Montage	16
Installation	18
Versorgungsspannung	18
Spannungsmessung	19
Strommessung über I1 bis I4	26
RS485-Schnittstelle	35
USB-Schnittstelle	38
Profibus-Schnittstelle (nur UMG 96RM-P)	39
Digitale Ausgänge	41
Digitale Eingänge	44
LED-Statusleiste	46
Bedienung	48
Anzeige-Modus	48
Programmier-Modus	48
Parameter und Messwerte	50

Konfiguration	52
Versorgungsspannung anlegen	52
Strom- und Spannungswandler	52
Stromwandler programmieren	54
Spannungswandler programmieren	55
Parameter programmieren	56
Aufzeichnungen	69
Inbetriebnahme	70
Versorgungsspannung anlegen	70
Messspannung anlegen	70
Messstrom anlegen	70
Drehfeldrichtung	71
Phasenzuordnung prüfen	71
Kontrolle der Leistungsmessung	71
Messung überprüfen	71
Überprüfen der Einzelleistungen	71
Überprüfen der Summenleistungen	72
RS485-Schnittstelle	73
Installation USB-Treiber	76
Profibus-Schnittstelle (nur UMG 96RM-P)	78
Digitalausgänge	86
Impulsausgang	88
Vergleicher und Grenzwertüberwachung	92

Service und Wartung	94
Service	94
Gerätejustierung	94
Kalibrierintervalle	94
Firmwareupdate	95
Batterie	95
Batteriekontroll-Funktion	96
Austausch der Batterie	97
Fehlermeldungen	98
Technische Daten	104
Kenngrößen von Funktionen	110
Tabelle 1 - Parameterliste	112
Tabelle 2 - Modbus-Adressenliste	116
Zahlenformate	119
Maßbilder	120
Übersicht Messwertanzeigen	124
Anschlussbeispiel	129
Kurzanleitung	130

Allgemeines

Copyright

Dieses Handbuch unterliegt den gesetzlichen Bestimmungen des Urheberrechtsschutzes und darf weder als Ganzes noch in Teilen auf mechanische oder elektronische Weise fotokopiert, nachgedruckt, reproduziert oder auf sonstigem Wege ohne die rechtsverbindliche, schriftliche Zustimmung von

Janitza electronics GmbH, Vor dem Polstück 1, D 35633 Lahnau, Deutschland,

vervielfältigt oder weiterveröffentlicht werden.

Markenzeichen

Alle Markenzeichen und ihre daraus resultierenden Rechte gehören den jeweiligen Inhabern dieser Rechte.

Haftungsausschluss

Janitza electronics GmbH übernimmt keinerlei Verantwortung für Fehler oder Mängel innerhalb dieses Handbuches und übernimmt keine Verpflichtung, den Inhalt dieses Handbuchs auf dem neuesten Stand zu halten.

Kommentare zum Handbuch

Ihre Kommentare sind uns willkommen. Falls irgend etwas in diesem Handbuch unklar erscheint, lassen Sie es uns bitte wissen und schicken Sie uns eine EMAIL an: info@janitza.de

Bedeutung der Symbole

Im vorliegenden Handbuch werden folgende Piktogramme verwendet:

Gefährliche Spannung!

Lebensgefahr oder schwere Verletzungsgefahr. Vor Beginn der Arbeiten Anlage und Gerät spannungsfrei schalten.

Achtuna!

Bitte beachten Sie die Dokumentation. Dieses Symbol soll Sie vor möglichen Gefahren warnen, die bei der Montage, der Inbetriebnahme und beim Gebrauch auftreten können.

Hinweis!

Anwendungshinweise

Bitte lesen Sie die vorliegende Bedienungsanleitung sowie alle weiteren Publikationen, die zum Arbeiten mit diesem Produkt (insbesondere für die Installation, den Betrieb oder die Wartung) hinzugezogen werden müssen.

Beachten Sie hierbei alle Sicherheitsvorschriften sowie Warnhinweise. Sollten Sie den Hinweisen nicht folgen, kann dies Personenschäden oder/und Schäden am Produkt hervorrufen.

Jegliche unerlaubte Änderung oder Verwendung dieses Geräts, welche über die angegebenen mechanischen, elektrischen oder anderweitigen Betriebsgrenzen hinausgeht, kann Personenschäden oder/und Schäden am Produkt hervorrufen.

Jegliche solche unerlaubte Änderung begründet "Missbrauch" und/oder "Fahrlässigkeit" im Sinne der Gewährleistung für das Produkt und schließt somit die Gewährleistung für die Deckung möglicher daraus folgender Schäden aus.

Dieses Gerät ist ausschließlich durch Fachkräfte zu betreiben und instandzuhalten. Fachkräfte sind Personen, die aufgrund ihrer einschlägigen Ausbildung und ihrer Erfahrung befähigt sind, Risiken zu erkennen und mögliche Gefährdungen zu vermeiden, die der Betrieb oder die Instandhaltung des Gerätes verursachen kann.

Bei Gebrauch des Gerätes sind zusätzlich die für den jeweiligen Anwendungsfall erforderlichen Rechts- und Sicherheitsvorschriften zu beachten.

Wird das Gerät nicht gemäß der Betriebsanleitung betrieben, so ist der Schutz nicht mehr sichergestellt und es kann Gefahr von dem Gerät ausgehen.

Leiter aus Einzeldrähten müssen mit Aderendhülsen versehen werden.

Nur Schraubsteckklemmen mit der gleichen Polzahl und der gleichen Bauart dürfen zusammengesteckt werden.

Die Missachtung von Anschlussbedingungen der Janitza-Messgeräte oder deren Komponenten kann zu Verletzungen bis hin zum Tod oder zu Sachschäden führen!

- Janitza-Messgeräte oder -Komponenten nicht für kritische Schalt-, Steuerungsoder Schutzanwendungen verwenden, bei denen die Sicherheit von Personen und Sachwerten von dieser Funktion abhängt.
- Schalthandlungen mit den Janitza-Messgeräten oder -Komponenten nicht ohne vorherige Prüfung Ihres Anlagenverantwortlichen mit Fachkenntnis vornehmen! Dabei sind insbesondere die Sicherheit von Personen, Sachwerten und einschlägige Normen zu berücksichtigen!

Zu dieser Betriebsanleitung

Diese Betriebsanleitung ist Teil des Produktes.

- Betriebsanleitung vor dem Gebrauch des Gerätes lesen.
- Betriebsanleitung während der gesamten Lebensdauer des Produkts aufbewahren und zum Nachschlagen bereit halten.
- Betriebsanleitung an jeden nachfolgenden Besitzer oder Benutzer des Produktes weitergeben.

Eingangskontrolle

Der einwandfreie und sichere Betrieb dieses Gerätes setzt sachgemäßen Transport, fachgerechte Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Instandhaltung voraus. Wenn anzunehmen ist, dass ein gefahrloser Betrieb nicht mehr möglich ist, so ist das Gerät unverzüglich außer Betrieb zu setzen und gegen unbeabsichtigte Inbetriebnahme zu sichern.

Das Aus- und Einpacken ist mit der üblichen Sorgfalt ohne Gewaltanwendung und nur unter Verwendung von geeignetem Werkzeug vorzunehmen. Die Geräte sind durch Sichtkontrolle auf einwandfreien mechanischen Zustand zu überprüfen.

Es ist anzunehmen, dass ein gefahrloser Betrieb nicht mehr möglich ist, wenn das Gerät z.B.

- sichtbare Beschädigung aufweist,
- trotz intakter Netzversorgung nicht mehr arbeitet,
- längere Zeit ungünstigen Verhältnissen (z.B. Lagerung außerhalb der zulässigen Klimagrenzen ohne Anpassung an das Raumklima, Betauung o.Ä..) oder Transportbeanspruchungen (z.B. Fall aus großer Höhe auch ohne sichtbare äußere Beschädigung o.Ä..) ausgesetzt war.
- Prüfen Sie bitte den Lieferumfang auf Vollständigkeit bevor Sie mit der Installation des Gerätes beginnen.

Lieferbares Zubehör

Anzahl	Art. Nr.	Bezeichnung
2	52.22.251	Befestigungsklammern
1	10.01.855	Schraubklemme, steckbar, 2-polig (Hilfsenergie)
1	10.01.849	Schraubklemme, steckbar, 4-polig (Spannungsmessung)
1	10.01.871	Schraubklemme, steckbar, 6-polig (Strommessung)
1	10.01.875	Schraubklemme, steckbar, 2-polig (Strommessung I4)
1	10.01.857	Schraubklemme, steckbar, 2-polig (RS 485)
1	10.01.865	Schraubklemme, steckbar, 10-polig (digitale Ein-/Ausgänge)
1	10.01.859	Schraubklemme, steckbar, 3-polig (Digital-/Impulsausgang)
1	08.02.434	USB-Anschlusskabel A/B, Länge 1,8 Meter
1	52.00.008	RS485-Abschlusswiderstand, 120 Ohm
1	21.01.058	Batterie 3V, TYP CR2032 (Zulassung nach UL1642)
1	29.01.065	Silikon-Dichtung, 96 x 96
1	15.06.015	Schnittstellen-Konverter RS485 <-> RS232
1	15.06.107	Schnittstellen-Konverter RS485 <-> USB
1	13.10.539	DSub-Stecker Profibus

Produktbeschreibung

Bestimmungsmäßiger Gebrauch

Das UMG 96RM-P/-CBM ist für die Messung und Berechnung von elektrischen Größen wie Spannung, Strom, Leistung, Energie, Oberschwingungen usw. in der Gebäudeinstallation, an Verteilern, Leistungsschaltern und Schienenverteilern vorgesehen.

Das UMG 96RM-P/-CBM ist für den Einbau in ortsfesten und wettergeschützten Schalttafeln geeignet. Leitende Schalttafeln müssen geerdet sein.

Messspannungen und Messströme müssen aus dem gleichen Netz stammen.

Die Messergebnisse können angezeigt und über die Schnittstellen ausgelesen und weiterverarbeitet werden.

Die Spannungsmesseingänge sind für die Messung in Niederspannungsnetzen, in welchen Nennspannungen bis 300V Leiter gegen Erde und Stoßspannungen der Überspannungskategorie III vorkommen können, ausgelegt. Die Strommesseingänge des UMG 96RM-P/-CBM werden über externe ../1A oder ../5A Stromwandler angeschlossen. Verwenden Sie für Janitza-Messgeräte und -Komponenten **ausschließlich** Stromwandler für Messzwecke ("Messwandler")!

"Messwandler" gehen im Gegensatz zu "Schutzwandlern" bei hohen Stromspitzen in Sättigung. "Schutzwandler" besitzen dieses Sättigungsverhalten nicht und können dadurch im Sekundärstromkreis deutlich über die normierten Werte hinausgehen. Dies kann die Strommesseingänge der Messgeräte überlasten!

Beachten Sie ferner Janitza-Messgeräte und -Komponenten **grundsätzlich** nicht für kritische Schalt-, Steuerungs- oder Schutzanwendungen (Schutzrelais) zu verwenden! Beachten Sie hierzu die Sicherheits- und Warnhinweise im Kapitel "Installation" und "Produktsicherheit"! Die Messung in Mittel- und Hochspannungsnetzen findet grundsätzlich über Strom- und Spannungswandlern statt. Das UMG 96RM-P/-CBM kann in Wohnbereichen und Industriebereichen eingesetzt werden.

Geräte-Kenngrößen

- Versorgungsspannung: Option 230V: 90V - 277V (50/60Hz) oder DC 90V - 250V; 300V CATIII
 Option 24V: 24 - 90V AC / DC; 150V CATIII
- Frequenzbereich: 45 65Hz

Geräte-Funktionen

	UMG 96RM	
	-P	-CBM
3 Spannungsmessungen, 300V	~	~
4 Strommessungen (über Stromwandler)	~	~
RS485-Schnittstelle (Modbus RTU)	~	~
Profibus	~	-
USB	~	✓
2 + 4 digitale Ausgänge	✓	✓
4 digitale Eingänge	\checkmark	\checkmark
Uhr, Speicher	\checkmark	✓

Leistungsmerkmale UMG 96RM-P/-CBM

- Allgemeines
 - Fronttafeleinbaugerät mit den Abmessungen 96x96 mm
 - Anschluss über Schraubsteck-Klemmen
 - LC Display mit Hintergrundbeleuchtung
 - Bedienung über 2 Tasten
 - 3 Spannungsmesseingänge (300V CATIII)
 - 4 Strommesseingänge für Stromwandler
 - RS485 Schnittstelle (Modbus RTU, Slave, bis 115 kbps)
 - 6 digitale Ausgänge und 4 digitale Eingänge
 - USB Schnittstelle
 - Nur Variante UMG 96RM-P: Profibus Schnittstelle (Profibus DP V0)
 - Arbeitstemperaturbereich -10°C .. +55°C
 - Speicherung von Min- und Maxwerten (mit Zeitstempel)
 - 5 MB Flash-Memory
 - Uhr und Batterie (mit Batteriekontroll-Funktion)
 - Konfigurierbare Aufzeichnungen, über RS485 und USB auslesbar
- Messunsicherheit
 - Wirkenergie, Messunsicherheit Klasse 0,5 für ./5A Wandler

- Wirkenergie, Messunsicherheit Klasse 1 für ../1A Wandler
- Blindenergie, Klasse 2
- Messung
 - Messung in IT-, TN- und TT-Netzen
 - Messung in Netzen mit Nennspannungen bis L-L 480V und L-N 277V
 - Messbereich Strom 0 ..5Aeff
 - Echte Effektivwertmessung (TRMS)
 - Kontinuierliche Abtastung der Spannungsund Strommesseingänge
 - Frequenzbereich der Grundschwingung 45Hz .. 65Hz
 - Messung der Oberschwingungen 1. bis 40. für ULN und I
 - Uln, I, P (Bezug/Lief.), Q (ind./kap.)
 - Fourieranalyse 1. bis 40. Oberschwingung f
 ür U und I
 - 7 Energiezähler für

Wirkenergie (Bezug), Wirkenergie (Lieferung), Wirkenergie (ohne Rücklaufsperre), Blindenergie (ind), Blindenergie (kap), Blindenergie (ohne Rücklaufsperre), Scheinenergie, jeweils für L1, L2, L3 und Summe.

• 8 Tarife (Umschaltung über Modbus)

Messverfahren

Das UMG 96RM-P/-CBM misst lückenlos und berechnet alle Effektivwerte über ein 10/12-Perioden-Intervall. Das UMG 96RM-P/-CBM misst den echten Effektivwert (TRMS) der an denn Messeingängen angelegten Spannungen und Ströme.

Bedienungskonzept

Sie können das UMG 96RM-P/-CBM über mehrere Wege programmieren und Messwerte abrufen.

- Direkt am Gerät über 2 Tasten
- Über die Programmiersoftware GridVis
- Über die Geräte-Homepage
- Über die RS485-Schnittstelle mit dem Modbus-Protokoll. Sie können Daten mit Hilfe der Modbus-Adressenliste (ist auf dem beiliegenden Datenträger abgelegt) ändern und abrufen.

In dieser Betriebsanleitung wird nur die Bedienung des UMG 96RM-P/-CBM über die 2 Tasten beschrieben. Die Programmiersoftware GridVis besitzt eine eigene "Online-Hilfe".

Für die Parametrierung über die RS485-Schnittstelle benötigen Sie zusätzliche Komponenten die nicht zum Lieferumfang gehören.

Netzanalysesoftware GridVis

Das UMG 96RM-P/-CBM kann mit der Netzanalysesoftware GridVis (Download unter www.janitza.de) programmiert und ausgelesen werden. Hierfür muss ein PC über eine serielle Schnittstelle an die USB- oder RS485-Schnittstelle des UMG 96RM-P/-CBM angeschlossen werden (siehe Anschlussvarianten).

Leistungsmerkmale GridVis

- Programmieren des UMG 96RM-P/-CBM
- Grafische Darstellung von Messwerten

Anschlussvarianten

Anschluss eines UMG 96RM-P oder -CBM an einen PC über die USB-Schnittstelle:

Anschluss eines UMG 96RM-P oder -CBM an einen PC über einen Schnittstellenwandler:

Anschluss eines UMG 96RM-P oder -CBM über ein UMG 604 als *Gateway*:

Montage

Einbauort

Das UMG 96RM-P/-CBM ist für den Einbau in ortsfesten und wettergeschützten Schalttafeln geeignet. Leitende Schalttafeln müssen geerdet sein.

Einbaulage

Um eine ausreichende Belüftung zu erreichen muss das UMG 96RM-P/-CBM senkrecht eingebaut werden. Der Abstand oben und unten muss mindestens 50mm und seitlich 20mm betragen.

Fronttafelausschnitt

Ausbruchmaß: 92^{+0,8} x 92^{+0,8} mm.

Abb. Einbaulage UMG 96RM-P/-CBM (Ansicht von hinten)

Nichteinhaltung der Mindestabstände kann das UMG 96RM-P/-CBM bei hohen Umgebungstemperaturen zerstören!

Befestigung

Das UMG 96RM-P/-CBM wird über die seitlich liegenden Befestigungsklammern in der Schalttafel fixiert. Vor dem Einsetzen des Gerätes sind diese z. B. mit Hilfe eines Schraubendrehers über eine horizontale Hebelwirkung zu entfernen.

Abb. Seitenansicht UMG 96RM-P/-CBM mit Befestigungsklammer. Ein Lösen der Klammer erfolgt mit Hilfe eines Schraubendrehers über eine horizontale Hebelwirkung.

Die Befestigung erfolgt anschließend über das Einschieben und Einrasten der Klammern mit anschließendem Eindrehen der Schrauben.

- Drehen Sie die Spannschrauben ein, bis diese die Montageplatte leicht berühren.
- Ziehen Sie mit jeweils zwei weiteren Umdrehungen die Spannschrauben an (werden die Schrauben zu fest angezogen, kann die Befestigungsklammer zerstört werden).

Installation

Versorgungsspannung

Für den Betrieb des UMG 96RM-P/-CBM ist eine Versorgungsspannung erforderlich. Der Anschluss der Versorgungsspannung erfolgt auf der Rückseite des Gerätes über Steckklemmen.

Stellen Sie vor dem Anlegen der Versorgungsspannung sicher, dass Spannung und Frequenz mit den Angaben auf dem Typenschild übereinstimmen!

- Die Versorgungsspannung muss über eine Überstromschutzeinrichtung gemäß den technischen Daten angeschlossen werden.
- In der Gebäudeinstallation muss ein Trennschalter oder Leistungsschalter für die Versorgungsspannung vorgesehen sein.
- Der Trennschalter muss in der N\u00e4he des Ger\u00e4tes angebracht und durch den Benutzer leicht zu erreichen sein.
- Der Schalter muss als Trennvorrichtung für dieses Gerät gekennzeichnet sein.
- Spannungen, die über dem zulässigen Spannungsbereich liegen, können das Gerät zerstören.

Abb. Anschlussbeispiel der Versorgungsspannung an ein UMG 96RM-P/-CBM

UMG 96RM-P/-CBM

Spannungsmessung

L1

12

L3

Ν

PF

Sie können das UMG 96RM-P/-CBM für die Spannungsmessung in TN-, TT-, und IT-Systemen einsetzen. Die Spannungsmessung im UMG 96RM-P/-CBM ist für die Überspannungskategorie 300V CATIII (Bemessungs-Stoßspannung 4kV) ausgelegt.

277V/480V 50/60Hz

V2 V3 VN

₽ M 4M

Spannungsmessung

V1

4M

UMG 96RM

Abb. Prinzipschaltbild - Messung in Dreiphasen-4-Leitersystemen.

₽ 1

Abb. Prinzipschaltbild - Messung in Dreiphasen-3-Leitersvstemen.

L1

Ν

240V

AC/DC

Hilfsenergie

DC

50/60Hz

In Systemen ohne N beziehen sich Messwerte die einen N benötigen auf einen berechneten N.

Netz-Nennspannung

Listen der Netze und deren Netz-Nennspannungen in denen das UMG 96RM-P/-CBM eingesetzt werden kann.

Dreiphasen-4-Leitersysteme mit geerdetem Neutralleiter.

U_{L-N} / U_{L-L}	
66V / 115V 120V / 208V 127V / 220V 220V / 380V 230V / 400V 240V / 415V	
260V / 440V 277V / 480V	Maximale Nennspannung des Netzes

Abb. Tabelle der für die Spannungsmesseingänge geeigneten Netz-Nennspannungen nach EN60664-1:2003.

Dreiphasen-3-Leitersysteme ungeerdet.

U _{L-L}	
66V	
120V	
127V	
220V	
230V	
240V	
260V	
277V	
347V	
380V	
400V	
415V	Maximala Managananana
440V	iviaximale Nennspannung
480V	des Netzes

Abb. Tabelle der für die Spannungsmesseingänge geeigneten Netz-Nennspannungen nach EN60664-1:2003.

Spannungsmesseingänge

Das UMG 96RM-P/-CBM hat 3 Spannungsmesseingänge (V1, V2, V3).

Überspannung

Die Spannungsmesseingänge sind für die Messung in Netzen, in denen Überspannungen der Überspannungskategorie 300V CATIII (Bemessungs-Stoßspannung 4kV) vorkommen können, geeignet.

Frequenz

Für die Messung und die Berechnung von Messwerten benötigt das UMG 96RM-P/-CBM die Netzfrequenz. Das UMG 96RM-P/-CBM ist für die Messung im Frequenzbereich von 45 bis 65Hz geeignet.

Abb. Anschlussbeispiel für die Spannungsmessung

Beim Anschluss der Spannungsmessung muss folgendes beachtet werden:

Trennvorrichtung

- Um das UMG 96RM-P/-CBM stromlos und spannungslos zu schalten, ist eine geeignete Trennvorrichtung vorzusehen.
- Die Trennvorrichtung muss in der Nähe des UMG 96RM-P/-CBM platziert, für den Benutzer gekennzeichnet und leicht erreichbar sein.
- Die Trennvorrichtung muss UL/IEC zugelassenen sein.

Überstromschutzeinrichtung

- Als Leitungsschutz muss eine Überstromschutzeinrichtung verwendet werden.
- Für den Leitungsschutz empfehlen wir eine Überstromschutzeinrichtung gemäß den Angaben der technischen Daten.
- Die Überstromschutzeinrichtung muss dem verwendeten Leitungsquerschnitt angepasst sein.
- Die Überstromschutzeinrichtung muss UL/IEC zugelassenen sein.
- Als Trennvorrichtung und als Leitungsschutz kann auch ein Leitungsschutzschalter verwendet werden. Die Leitungsschutzschalter muss UL/IEC zugelassenen sein.
- Messspannungen und Messströme müssen aus dem gleichen Netz stammen.

Achtung!

Spannungen, die die erlaubten Netz-Nennspannungen überschreiten, müssen über Spannungswandler angeschlossen werden.

Achtung!

Das UMG 96RM-P/-CBM ist nicht für die Messung von Gleichspannungen geeignet.

Achtung!

Die Spannungsmesseingänge am UMG 96RM-P/-CBM sind berührungsgefährlich!

UMG 96RM-P/-CBM

Anschlussschemas, Spannungsmessung

• 3p 4w (Adr. 509= 0), werksseitige Voreinstellung

Abb. System mit drei Außenleitern und Neutralleiter.

• 3p 4u (Adr. 509 = 2)

Abb. System mit drei Außenleitern ohne Neutralleiter. Messwerte die einen N benötigen beziehen sich auf einen berechneten N.

• 3p 4wu (Adr. 509 = 1)

Abb. System mit drei Außenleitern und Neutralleiter. Messung über Spannungswandler.

• 3p 2u (Adr. 509 = 5)

Abb. System mit drei Außenleitern ohne Neutralleiter. Messung über Spannungswandler. Messwerte die einen N benötigen beziehen sich auf einen berechneten N. • 1p 2w1 (Adr. 509 = 4)

Abb. Aus dem Spannungsmesseingängen V2 und V3 abgeleitet Messwerte werden mit Null angenommen und nicht berechnet.

• 1p 2w (Adr. 509 = 6)

Abb. TN-C-System mit Einphasen-Dreileiteranschluss. Aus dem Spannungsmesseingang V3 abgeleitet Messwerte werden mit Null angenommen und nicht berechnet. • 2p 4w (Adr. 509 = 3)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für den Spannungsmesseingang V2 werden berechnet.

• 3p 1w (Adr. 509 = 7)

Abb. 3 Systeme mit gleichmäßiger Belastung der Phasen. Die nicht angelegten Messwerte L2/L3 bzw. L1/L3 bzw. L1/L2 der jeweiligen Systeme werden berechnet.

Strommessung über I1 bis I4

Das UMG 96RM-P/-CBM ist über die Klemmen I1-I4 für den Anschluss von Stromwandlern mit Sekundärströmen von ../1A und ../5A ausgelegt. Das werkseitig eingestellte Stromwandlerverhältnis liegt bei 5/5A und muss gegebenenfalls an die verwendeten Stromwandler angepasst werden.

Eine Direktmessung ohne Stromwandler ist mit dem UMG 96RM-P/-CBM nicht möglich.

Es können nur Wechselströme und keine Gleichströme gemessen werden.

Über den **Strommesseingang I4** erfolgt aufgrund des fehlenden Multiplikators mit einer Spannung nur eine Scheinstrommessung. Leistungsmessungen mit Hilfe des Eingangs I4 sind daher nicht möglich.

Achtung!

Messleitungen müssen für eine Betriebstemperatur von mindestens 80°C ausgelegt sein.

Achtung!

Die Strommesseingänge sind berührungsgefährlich.

Abb. Strommessung (11-13) über Stromwandler (Anschlussbeispiel)

Die aufgesetzte Schraubklemme ist mit den zwei Schrauben am Gerät ausreichend zu fixieren!

Erdung von Stromwandlern!

Ist für die Erdung der Sekundärwicklung ein Anschluss vorgesehen, so muss dieser mit Erde verbunden werden.

Achtung!

Das UMG 96RM-P/-CBM ist nicht für die Messung von Gleichspannungen geeignet.

Für den Messeingang I4 muss kein Anschlussschema konfiguriert werden.

Abb. Strommessung (I4) über Stromwandler (Anschlussbeispiel)

Stromrichtung

Die Stromrichtung kann am Gerät oder über die vorhande serielle Schnittstellen für jede Phase einzeln korrigiert werden.

Bei Falschanschluss ist ein nachträgliches Umklemmen der Stromwandler nicht erforderlich.

Stromwandleranschlüsse!

Die Sekundäranschlüsse der Stromwandler müssen an diesen kurzgeschlossen sein, bevor die Stromzuleitungen zum UMG 96RM-P/-CBM unterbrochen werden!

Ist ein Prüfschalter vorhanden, welcher die Stromwandlersekundärleitungen automatisch kurzschließt, reicht es aus, diesen in die Stellung "Prüfen" zu bringen, sofern die Kurzschließer vorher überprüft worden sind.

Offene Stromwandler!

An Stromwandlern die sekundärseitig offen betrieben werden, können hohe berührungsgefährliche Spannungsspitzen auftreten!

Bei "offensicheren Stromwandlern" ist die Wicklungsisolation so bemessen, dass die Stromwandler offen betrieben werden können. Aber auch diese Stromwandler sind berührungsgefährlich, wenn sie offen betrieben werden.

Achtung!

Das UMG96RM ist nur für eine Strommessung über Stromwandler zugelassen.

Die Nichtbeachtung von Anschlussbedingungen der Messwandler an Janitza-Messgeräten oder deren Komponenten kann zu Verletzungen bis hin zum Tod oder zu Sachschäden führen!

- Verwenden Sie Janitza-Messgeräte oder -Komponenten nicht für kritische Schalt-, Steuerungs- oder Schutzanwendungen (Schutzrelais)! Es ist unzulässig Messwerte oder Messgeräteausgänge für kritische Anwendungen zu verwenden!
- Verwenden Sie f
 ür Janitza-Messger
 äte und dessen Komponenten ausschließlich "Messwandler f
 ür Messzwecke", die sich f
 ür das Energie-Monitoring Ihrer Anlage eignen. Keine "Messwandler f
 ür Schutzzwecke" verwenden!
- Beachten Sie Hinweise, Bestimmungen und Grenzwerte in den Nutzungsinformationen der "Messwandler für Messzwecke", auch bei der Prüfung und Inbetriebnahme des Janitza-Messgeräts, der Janitza-Komponente und Ihrer Anlage. Spannungen, die über dem zulässigen Spannungsbereich liegen, können das Gerät zerstören.

Anschlussschemas, Strommessung

• 3p 4w (Adr. 510 = 0), werksseitige Voreinstellung

Abb. Messung in einem Dreiphasennetz mit ungleichmäßiger Belastung.

• 3p 2i0 (Adr. 510 = 2)

Abb. Die Messwerte für den Strommesseingang 12 werden berechnet.

• 3p 2i (Adr. 510 = 1)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für den Strommesseingang I2 werden gemessen.

• 3p 3w3 (Adr. 510 = 3)

Abb. Messung in einem Dreiphasennetz mit ungleichmäßiger Belastung.

• 3p 3w (Adr. 510 = 4)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für die Strommesseingänge I2 und I3 werden berechnet.

• 1p 2i (Adr. 510 = 6)

Abb. Aus dem Strommesseingang I3 abgeleitete Messwerte werden mit Null angenommen und nicht berechnet.

• 2p 4w (Adr. 510 = 5)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für den Strommesseingang I2 werden berechnet.

• 1p 2w (Adr. 510 = 7)

Abb. Aus den Strommesseingängen I2 und I3 abgeleitete Messwerte werden mit Null angenommen und nicht berechnet.

Anschlussschemas, Strommessung

• 3p 1w (Adr. 510 = 8)

Abb. 3 Systeme mit gleichmäßiger Belastung der Phasen. Die nicht angelegten Messwerte I2/ I3 bzw. 11/I3 bzw. 11/I2 der jeweiligen Systeme werden berechnet.

Summenstrommessung

Erfolgt die Strommessung über zwei Stromwandler, so muss das Gesamtübersetzungsverhältnis der Stromwandler im UMG 96RM-P/-CBM programmiert werden.

Abb. Strommessung über einen Summenstromwandler (Beispiel).

Beispiel: Die Strommessung erfolgt über zwei Stromwandler. Beide Stromwandler haben ein Übersetzungsverhältnis von 1000/5A. Die Summenmessung wird mit einem Summenstromwandler 5+5/5A durchgeführt.

Das UMG 96RM-P/-CBM muss dann wie folgt eingestellt werden:

Primärstrom:	1000A + 1000A =	2000A
Sekundärstrom:		5A

Amperemeter

Wollen Sie den Strom nicht nur mit dem UMG 96RM-P/ -CBM, sondern auch zusätzlich mit einem Amperemeter messen, so muss das Amperemeter in Reihe zum UMG 96RM-P/-CBM geschaltet werden.

Abb. Strommessung mit einem zusätzlichen Amperemeter (Beispiel).

RS485-Schnittstelle

Die BS/85-Schnittstelle ist heim LIMG 96BM-P/-CBM als 2-poliger Steckkontakt ausgeführt und kommuniziert über das Modbus-BTU-Protokoll (siehe auch Parameter programmieren).

RS485-Schnittstelle 2-poliger Steckkontakt

RS485-Schnittstelle. 2-poliger Steckkontakt mit Abschlusswiderstand (Art.-Nr. 52.00.008)

Abschlusswiderstände

Am Anfang und am Ende eines Segments wird das Kabel mit Widerständen (1200hm 1/4W) terminiert.

Das LIMG 96RM-P/-CRM enthält keine Abschlusswiderstände

Falsch

Klemmleiste im Schaltschrank

Gerät mit RS485 Schnittstelle (Ohne Abschlusswiderstand)

Gerät mit BS485 Schnittstelle. (Mit Abschlusswiderstand am Gerät)

Abschirmung

Für Verbindungen über die RS485 Schnittstelle ist ein verdrilltes und abgeschirmtes Kabel vorzusehen.

- Erden Sie die Schirme aller Kabel, die in den Schrank führen, am Schrankeintritt.
- Verbinden Sie den Schirm großflächig und gut leitend mit einer Fremdspannungsarmen Erde.
- Fangen Sie die Kabel oberhalb der Erdungsschelle mechanisch ab, um Beschädingungen durch Bewegungen des Kabels zu vermeiden.
- Verwenden Sie zur Einführung des Kabels in den Schaltschrank passende Kabeleinführungen zum Beispiel PG-Verschraubungen.

Kabeltyp

Die verwendeten Kabel müssen für eine Umgebungstemperatur von mindestens 80°C geeignet sein.

Empfohlener Kabeltyp: Unitronic Li2YCY(TP) 2x2x0,22 (Lapp Kabel)

Maximale Kabellänge

1200m bei einer Baudrate von 38,4k.

Für die Busverdrahtung sind CAT-Kabel nicht geeignet. Verwenden Sie hierfür die empfohlenen Kabeltypen.

Abb. Abschirmungsauslegung bei Schrankeintritt.
Bus-Struktur

- Alle Geräte werden in einer Busstruktur (Linie) angeschlossen und jedes Gerät besitzt eine eigene Adresse innerhalb des Buses (siehe auch Parameter programmieren).
- In einem Segment können bis zu 32 Teilnehmer zusammengeschaltet werden.
- Am Anfang und am Ende eines Segments wird das Kabel mit Widerständen (Busabschluß, 1200hm, 1/4W) terminiert.
- Bei mehr als 32 Teilnehmern müssen Repeater (Leitungsverstärker) eingesetzt werden, um die einzelnen Segmente zu verbinden.

- Geräte mit eingeschaltetem Busabschluß müssen unter Speisung stehen.
- Es wird empfohlen den Master an das Ende eines Segmentes zu setzen.
- Wird der Master mit eingeschaltetem Busabschluß ausgetauscht, ist der Bus außer Betrieb.
- Wird ein Slave mit eingeschaltetem Busabschluß ausgetauscht oder ist spannungslos kann der Bus instabil werden.
- Geräte die nicht am Busabschluß beteiligt sind, können ausgetauscht werden, ohne dass der Bus instabil wird.
- Der Schirm ist durchgängig zu installieren und am Ende großflächig und gut leitend mit einer fremdspannungsarmen Erde zu verbinden.

USB-Schnittstelle

Der Universal Serial Bus (USB) ermöglicht eine schnelle und unkomplizierte Verbindung zwischen dem Gerät und einem Computer. Nach der Installation der USB-Treiber kann über die Software GridVis ein Auslesen der Gerätedaten sowie ein Einspielen von Firmwareupdates stattfinden.

Für die USB-Anbindung des Gerätes an die USB-Schnittstelle des Computers wird das im Lieferumfang enthaltene USB2.0-Anschlusskabel mit A/B-Steckern benötigt.

Die Kabellänge der USB-Verbindung sollte 5m nicht überschreiten.

Profibus-Schnittstelle (nur UMG 96RM-P)

Diese als 9-polige DSub-Buchse ausgelegte RS485-Schnittstelle unterstützt das Protokoll Profibus DP V0 Slave.

Für den einfachen Anschluss ankommender und abgehender Busleitungen sind diese über einen Profibusstecker mit dem UNG96RM-P zu verbinden.

Zum Anschluss empfehlen wir einen 9-poligen Profibusstecker z.B. der Firma Phoenix vom Typ "SUBCON-Plus-ProfiB/AX/SC" mit der Artikelnummer 2744380. (Janitza Art.Nr.: 13.10.539)

> Bei Verwendung des Gerätes in einem Profibus-System ist die Geräteadresse über den Parameter 000 zu setzen!

Die Baudrate in einem Profibus-System wird automatisch erkannt und muss NICHT über die Adresse 001 eingestellt werden!

Abb. UMG 96RM-P mit DSub-Buchse für Profibus (Ansicht von hinten).

Anschluss der Busleitungen

Die ankommende Busleitung wird mit den Klemmen 1A und 1B des Profibussteckers verbunden. Die weiterführende Busleitung für das nächste Gerät in der Linie ist mit den Klemmen 2A und 2B anzuschließen.

Folgt innerhalb der Linie kein Gerät mehr, so muss die Busleitung mit Widerständen terminiert (Schalter auf ON) werden.

In der Schalterstellung ON sind die Klemmen 2A und 2B für die weiterführende Busleitung abgeschaltet.

Abb. Profibusstecker mit Abschlusswiderständen.

Übertragungs- geschwindigkeiten in kBit/s	max. Segmentlänge
9,6; 19,2; 45,45; 93,75	1200m
187,5	1000m
500	400m
1500	200m
3000; 6000; 12000	100m

Tab. Segmentlängen gemäß Profibus-Spezifikation.

Digitale Ausgänge

Das UMG 96RM-P bzw. UMG96RM-CBM besitzt 6 digitale Ausgänge, wobei diese in zwei Gruppen zu 2 und 4 Ausgängen unterteilt sind (siehe Abbildung rechts).

Digitalausgänge Gruppe 1

- Die Statusanzeige erfolgt im Display unter K1 bzw. K2
- Die Statusanzeige im Display ist unabhängig einer aktivierten Invertierung (Öffner / Schließer)

Digitalausgänge Gruppe 2

 Der Status der Ausgänge der Gruppe 2 wird über die zugehörige LED signalisiert (vgl. Kapitel LED-Statusleiste).

Die Ausgänge sind über Optokoppler galvanisch von der Auswerteelektronik getrennt. Die digitalen Ausgänge haben einen gemeinsamen Bezug.

- Die digitalen Ausgänge können Gleich- und Wechselstromlasten schalten.
- Die digitalen Ausgänge sind nicht kurzschlussfest.
- Angeschlossene Leitungen die länger als 30m sind, müssen abgeschirmt verlegt werden.
- Eine externe Hilfsspannung ist erforderlich.
- Die digitalen Ausgänge können als Impulsausgänge verwendet werden.
- Die digitalen Ausgänge können über Modbus gesteuert werden.
- Die digitalen Ausgänge können Ergebnisse von Vergleichern ausgeben.

Um die Anzeige einer Restspannung des Messgeräts zu vermeiden, verbinden Sie die Klemme "13" der digitalen Ausgänge Ihres Geräts als Funktionserde (FE) mit dem PE-Leiter Ihres Systems. Verwenden Sie für die Leitung der Funktionserde die Farbe "rosa" (DIN EN 60445/VDE 0197).

Bei der Verwendung der digitalen Ausgänge als Impulsausgang darf die Hilfsspannung (DC) nur eine max. Restwelligkeit von 5% besitzen. In der Software GridVis können Funktionen für die Digital-Ausgänge übersichtlich eingestellt werden. Für die Verwendung der Software GridVis ist eine Verbindung zwischen UMG 96RM-P/-CBM und PC über eine Schnittstelle erforderlich.

DC-Anschlussbeispiel

UMG 96RM-P/-CBM

Digitale Eingänge

Das UMG 96RM-P bzw. UMG96RM-CBM besitzt 4 digitale Eingänge, an welche Sie je einen Signalgeber anschließen können.

An einem digitalen Eingang wird ein Eingangssignal erkannt wenn eine Spannung von mindestens 10V und maximal 28V angelegt wird und dabei ein Strom von mindestens 1mA und maximal 6mA fließt. Leitungen größer 30m müssen abgeschirmt verlegt werden.

Die Polung der Versorgungsspannung muss beachtet werden!

Abb. Beispiel für den Anschluss der externen Schaltkontakte S1 und S2 an die digitalen Eingänge 1 und 2.

S0 Impulseingang

Sie können an jeden digitalen Eingang einen S0 Impulsgeber nach DIN EN62053-31 anschließen.

Sie benötigen eine externe Hilfsspannung mit einer Ausgangsspannung im Bereich 20 .. 28V DC und einen Widerstand mit 1,5kOhm.

Abb. Beispiel für den Anschluss eines S0 Impulsgebers an den digitalen Eingang 1.

LED-Statusleiste

Über die LED-Statusleiste auf der Rückseite des Gerätes werden die unterschiedlichen Zustände der Ein- bzw. Ausgänge aufgezeigt.

Digitale Eingänge

Die jeweils dem Eingang zugeordnete LED leuchtet grün auf, wenn an dieser Schnittstelle ein Signal von mind. 1mA fließt.

Digitale Ausgänge

Die jeweils dem Ausgang zugeordnete LED leuchtet grün auf, wenn der Ausgang aktiv ist - unabhängig von einem weiterführenden Anschluss an diese Schnittstelle.

Profibus (nur Variante UMG 96RM-P)

Die dem Profibus zugeordnete LED zeigt über eine Rotbzw. Grünfärbung und einer Blinkfrequenz weiterführende Informationen laut Tabelle 5.1 an.

Profibus LED-Status			
Blinkfrequenz	Rot	Grün	Zustand
leuchtet permanent	х	-	Noch kein Kontakt zur SPS
langsam (ca. 1 mal pro Sek.)	х	-	Fehler in den Konfigurationsdaten
sehr langsam (ca. 1 mal pro 2 Sek.)	х	-	Fehler beim Datenaustausch
leuchtet permanent	-	х	Datenaustausch mit der SPS
schnell (ca. 3 mal pro Sek.)	-	х	UMG wartet auf Parametrierdaten
langsam (ca. 1 mal pro Sek.)	-	х	UMG wartet auf Konfigurationsdaten

Tab. 5.1. LED-Statusleiste der Ein- bzw. Ausgänge

x = aktiv - = passiv

 \bigcirc

Der Zustand "UMG wartet auf Konfigurationsdaten" wird auch erreicht, wenn keine SPS angeschlossen ist.

Bedienung

Die Bedienung des UMG 96RM-P/-CBM erfolgt über die Tasten 1 und 2. Messwerte und Programmierdaten werden auf einer Flüssigkristall-Anzeige dargestellt.

Es wird zwischen dem Anzeige-Modus und dem Programmier-Modus unterschieden. Durch die Eingabe eines Passwortes hat man die Möglichkeit, ein versehentliches Ändern der Programmierdaten zu verhindern.

Anzeige-Modus

Im Anzeige-Modus kann man mit den Tasten 1 und 2 zwischen den programmierten Messwertanzeigen blättern. Werkseitig sind alle im Profil 1 aufgeführten Messwertanzeigen abrufbar. Pro Messwertanzeige werden bis zu drei Messwerte angezeigt. Die Messwert-Weiterschaltung erlaubt es, ausgewählte Messwertanzeigen abwechselnd nach einer einstellbaren Wechselzeit darzustellen.

Programmier-Modus

Im Programmier-Modus können die für den Betrieb des UMG 96RM-P/-CBM notwendigen Einstellungen angezeigt und geändert werden. Betätigt man die Tasten 1 und 2 gleichzeitig für etwa 1 Sekunde, gelangt man über die Passwort-Abfrage in den Programmier-Mode. Wurde kein Benutzer-Passwort programmiert gelangt man direkt in das erste Programmiermenü. Der Programmier-Modus wird in der Anzeige durch den Text "PRG" gekennzeichnet.

Mit der Taste 2 kann jetzt zwischen den folgenden Programmier-Menüs umgeschaltet werden:

- Stromwandler,
- Spannungswandler,
- Parameterliste.

Befindet man sich im Programmier-Modus und hat für ca. 60 Sekunden keine Taste betätigt, oder betätigt die Tasten 1 und 2 für etwa 1 Sekunde gleichzeitig, so kehrt das UMG 96RM-P/-CBM in den Anzeige-Modus zurück.

Parameter und Messwerte

Alle für den Betrieb des UMG 96RM-P/-CBM notwendigen Parameter, wie z.B. die Stromwandlerdaten, und eine Auswahl von häufig benötigten Messwerten sind in der Tabell abgelegt.

Auf den Inhalt der meisten Adressen kann über die serielle Schnittstelle und über die Tasten am UMG 96RM -P/-CBM zugegriffen werden.

Am Gerät können Sie nur die ersten 3 signifikanten Stellen eines Wertes eingeben. Werte mit mehr Stellen können Sie über die GridVis eingeben.

Am Gerät werden immer nur die ersten 3 signifikanten Stellen der Werte angezeigt.

Ausgewählte Messwerte sind in Messwertanzeige-Profilen zusammengefasst und können im Anzeige-Modus über die Tasten 1 und 2 zur Anzeige gebracht werden.

Das aktuelle Messwertanzeigenprofil und das aktuelle Anzeigen-Wechsel-Profil können nur über die RS485 Schnittstelle gelesen und verändert werden.

Beispiel Paramteranzeige

Im Display des UMG 96RM-P/-CBM wird als Inhalt der Adresse "000" der Wert "001" angezeigt. Dieser Parameter gibt laut Liste die Geräteadresse (hier "001") des UMG 96 RM-P/-CBM innerhalb eines Buses wieder.

Beispiel Messwertanzeige

In diesem Beispiel werden im Display des UMG 96RM-P/ -CBM die Spannungen L gegen N mit je 230V angezeigt. Die Transistorausgänge K1 und K2 sind leitend und es kann ein Strom fließen.

Tastenfunktionen

Konfiguration

Versorgungsspannung anlegen

Für die Konfiguration des UMG 96RM-P/-CBM muss die Versorgungsspannung angeschlossen sein.

Die Höhe der Versorgungsspannung für das UMG 96RM -P/-CBM können Sie dem Typenschild entnehmen.

Erscheint keine Anzeige, so muss überprüft werden, ob sich die Betriebsspannung im Nennspannungsbereich befindet.

Strom- und Spannungswandler

Werkseitig ist ein Stromwandler von 5/5A eingestellt. Nur wenn Spannungswandler angeschlossen sind, muss das vorprogrammierte Spannungswandlerverhältnis geändert werden.

Beim Anschluss von Spannungswandlern ist die auf dem Typenschild des UMG 96RM-P/-CBM angegebene Messspannung zu beachten!

Achtung!

Versorgungsspannungen, die nicht der Typenschildangabe entsprechen, können zu Fehlfunktionen und zur Zerstörung des Gerätes führen.

Der einstellbare Wert 0 für die primären Stromwandler ergibt keine sinnvollen Arbeitswerte und darf nicht verwendet werden.

 \triangle

Geräte, die auf automatischer Frequenzerkennung stehen, benötigen etwa 20 Sekunden bis die Netzfrequenz ermittelt wurde. In dieser Zeit halten die Messwerte die zugesicherte Messunsicherheit nicht ein.

Vor der Inbetriebnahme sind mögliche produktionsbedingte Inhalte der Energiezähler, Min-/Maxwerte sowie Aufzeichnungen zu löschen!

Strom- und Spannungswandler

In der Software GridVis können die Übersetzungsverhältnisse für jeden der drei Strom- bzw. Spannungsmesseingänge einzeln programmiert werden. Am Gerät ist nur das Übersetz-ungsverhältnis der jeweiligen Gruppe der Strommesseingänge bzw. der Spannungsmesseingänge einstellbar.

Abb. Anzeige zur Konfiguration der Strom- und Spannungswandler in der Software GridVis.

Stromwandler programmieren

In den Programmier-Modus wechseln

- Ein Wechsel in den Programmier-Modus erfolgt über das gleichzeitige Drücken der Tasten 1 und 2. Wurde ein Benutzer-Passwort programmiert, so erscheint die Passwortabfrage mit "000". Die erste Ziffer des Benutzer-Passwortes blinkt und kann mit der Taste 2 geändert werden. Betätigt man die Taste 1 wird die nächste Ziffer ausgewählt und blinkt. Wurde die richtige Zahlenkombination eingegeben oder war kein Benutzer-Passwort programmiert, gelangt man in den Programmier-Modus.
- Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Mit Taste 1 wird die Auswahl bestätigt.
- Die erste Ziffer des Eingabebereiches f
 ür den Prim
 ärstrom blinkt.

Eingabe Stromwandler-Primärstrom

- Mit Taste 2 die blinkende Ziffer ändern.
- Mit Taste 1 die nächste zu ändernde Ziffer wählen. Die für eine Änderung ausgewählte Ziffer blinkt. Blinkt die gesamte Zahl, so kann das Komma mit Taste 2 verschoben werden.

Eingabe Stromwandler-Sekundärstrom

- Als Sekundärstrom kann nur 1A oder 5A eingestellt werden.
- Mit Taste 1 den Sekundärstrom wählen.
- Mit Taste 2 die blinkende Ziffer ändern.

Programm-Modus verlassen

• Über das gleichzeitige Drücken der Tasten 1 und 2 wird der Programm-Modus verlassen.

Spannungswandler programmieren

- Wechseln Sie wie beschrieben in den Programmier-Modus. Die Symbole f
 ür den Programmier-Modus PRG und f
 ür den Stromwandler CT erscheinen.
- Über die Taste 2 erfolgt das Umschalten auf die Spannungswandler-Einstellung.
- Mit Taste 1 wird die Auswahl bestätigt.
- Die erste Ziffer des Eingabebereiches für die Primärspannung blinkt. Analog der Zuordnung des Stromwandlerverhältnisses von Primär- zu Sekundärstrom kann das Verhältnis von Primär- zu Sekundärspannung des Spannungswandlers eingestellt werden.

Parameter programmieren

In den Programmier-Modus wechseln

- Wechseln Sie wie beschrieben in den Programmier-Modus. Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Über die Taste 2 erfolgt das Umschalten auf die Spannungswandler-Einstellung. Bei wiederholtem Drücken der Taste 2 wird der erste Parameter der Parameterliste angezeigt.

Parameter ändern

- Die Auswahl mit Taste 1 bestätigen.
- Die zuletzt gewählte Adresse mit dem dazugehörigen Wert wird angezeigt.
- Die erste Ziffer der Adresse blinkt und kann mit Taste 2 verändert werden. Über Taste 1 findet eine Auswahl der Ziffer statt, die wiederum mit Taste 2 verändert werden kann.

Wert ändern

• Ist die gewünschte Adresse eingestellt, wird mit Taste 1 eine Ziffer des Wertes angewählt und mit Taste 2 geändert.

Programm-Modus verlassen

• Über das gleichzeitige Drücken der Tasten 1 und 2 wird der Programm-Modus verlassen.

Abb. Passwortabfrage Wurde ein Passwort gesetzt, kann über die Tasten 1 und 2 dieses eingegeben werden.

Abb. Programmier-Modus Stromwandler Über die Tasten 1 und 2 können Primär- und Sekundärstrom geändert werden (vgl. Seite 52).

Abb. Programmier-Modus Spannungswandler Über die Tasten 1 und 2 können Primär- und Sekundärstrom geändert werden (vgl. Seite 53).

Abb. Programmier-Modus Parameteranzeige Über die Tasten 1 und 2 können die einzelnen Parameter geändert werden (vgl. Seite 48).

Geräteadresse (Adr. 000)

Sind mehere Geräte über die RS485-Schnittstelle miteinander verbunden, so kann ein Mastergerät diese Geräte nur aufgrund ihrer Geräteadresse unterscheiden. Innerhalb eines Netzes muss daher jedes Gerät eine andere Geräteadresse besitzen. Es können Adressen im Bereich 1 bis 247 eingestellt werden.

Der einstellbare Bereich der Geräteadresse liegt zwischen 0 und 255. Die Werte 0 und 248 bis 255 sind reserviert und dürfen nicht verwendet werden.

Baudrate (Adr. 001)

Für die RS485-Schnittstellen ist eine gemeinsame Baudrate einstellbar. Die Baudrate ist im Netz einheitlich zu wählen. Über die Adresse 003 kann die Anzahl der Stopbits (0=1Bit, 1=2Bits) gesetzt werden. Datenbits (8) sind fest voreingestellt.

Einstellung	Baudrate
0	9.6kbps
1	19.2kbps
2	38.4kbps
3	57.6kbps
4	115.2kbps (Werkseinstellung)

Mittelwert

Für die Strom-, Spannungs- und Leistungsmesswerte werden Mittelwerte über einen einstellbaren Zeitraum gebildet. Die Mittelwerte sind mit einem Querstrich über dem Messwert gekennzeichnet.

Die Mittelungszeit kann aus einer Liste mit 9 festen Mittelungszeiten ausgewählt werden.

Mittelungszeit Strom (Adr. 040) Mittelungszeit Leistung (Adr. 041) Mittelungszeit Spannung (Adr. 042)

Einstellung	Mittelungszeit/Sek.
0	5
1	10
2	15
3	30
4	60
5	300
6	480 (Werkseinstellung)
7	600
8	900

Mittelungsverfahren

Das verwendete exponentielle Mittelungsverfahren erreicht nach der eingestellten Mittelungszeit mindestens 95% des Messwertes.

Min- und Maxwerte

Alle 10/12 Perioden werden alle Messwerte gemessen und berechnet. Zu den meisten Messwerten werden Min- und Maxwerte ermittelt.

Der Minwert ist der kleinste Messwert, der seit der letzten Löschung ermittelt wurde. Der Maxwert ist der größte Messwert, der seit der letzten Löschung ermittelt wurde. Alle Min- und Maxwerte werden mit den dazugehörigen Messwerten verglichen und bei Unter- bzw. Überschreitung überschrieben.

Die Min- und Maxwerte werden alle 5 Minuten in einem EEPROM ohne Datum und Uhrzeit gespeichert. Dadurch können durch einen Betriebsspannungsausfall nur die Min- und Maxwerte der letzten 5 Minuten verloren gehen.

Min- und Maxwerte löschen (Adr.506)

Wird auf die Adresse 506 eine "001" geschrieben, werden alle Min- und Maxwerte gleichzeitig gelöscht.

Netzfrequenz (Adr. 034)

Für die automatische Ermittlung der Netzfrequenz muss am Spannungsmesseingang V1 eine Spannung L1-N von größer 10Veff anliegen.

Aus der Netzfrequenz wird dann die Abtastfrequenz für die Strom- und Spannungseingänge berechnet.

Fehlt die Messspannung, so kann keine Netzfrequenz ermittelt und damit keine Abtastfrequenz berechnet werden. Es kommt die quittierbare Fehlermeldung "500". Spannung, Strom und alle anderen sich daraus ergebenden Werte werden auf Basis der letzten Frequenzmessung bzw. aufgrund von möglichen Leitungskopplungen berechnet und weiterhin angezeigt. Diese ermittelten Messwerte unterliegen jedoch nicht mehr der angegebenen Genauigkeit.

lst eine erneute Messung der Frequenz möglich, wird die Fehlermeldung nach ca. 5 Sekunden nach Wiederkehr der Spannung automatisch ausgeblendet.

Der Fehler wird nicht angezeigt, wenn eine Festfrequenz eingestellt ist.

Einstellbereich: 0, 45...65

0 = Automatische Frequenzbestimmung.

Die Netzfrequenz wird aus der Messpannung ermittelt.

45..65 = Festfrequenz

Die Netzfrequenz wird fest vorgewählt.

Energiezähler

Das UMG 96RM-P/-CBM hat Energiezähler für Wirkenergie, Blindenergie und Scheinenergie.

Ablesen der Wirkenergie

Summe Wirkenergie

Die in diesem Beispiel angezeigte Wirkenergie beträgt: 12 345 678 kWh

Die in diesem Beispiel angezeigte Wirkenergie beträgt: 134 178 kWh

Oberschwingungen

Oberschwingungen sind das ganzzahlige Vielfache einer Grundschwingung.

Beim UMG 96RM-P/-CBM muss die Grundschwingung der Spannung im Bereich 45 bis 65Hz liegen. Auf diese Grundschwingung beziehen sich die berechneten Oberschwingungen der Spannungen und der Ströme.

Oberschwingungen bis zum 40fachen der Grundschwingung werden erfasst.

Die Oberschwingungen für die Ströme werden in Ampere und die Oberschwingungen der Spannungen in Volt angegeben.

Abb. Anzeige der 15. Oberschwingung des Stromes in der Phase L3 (Beispiel).

Oberschwingungen werden nicht in der werksseitigen Voreinstellung angezeigt.

Oberschwingungsgehalt THD

THD ist das Verhältnis des Effektivwertes der Oberschwingungen zum Effektivwert der Grundschwingung.

Oberschwingungsgehalt des Stromes THDI:

$$\textit{THD}_{\textit{I}} = \frac{1}{\left|\textit{I}_{\textit{fund}}\right|} \sqrt{\sum_{n=2}^{M} \left|\textit{I}_{n.\textit{Harm}}\right|^2}$$

Oberschwingungsgehalt der Spannung THDU:

$$\textit{THD}_{U} = \frac{1}{\left|U_{\textit{fund}}\right|} \sqrt{\sum_{n=2}^{M} \left|U_{n.\textit{Harm}}\right|^2}$$

Abb. Anzeige des Oberschwingungsgehalt THD der Spannung aus der Phase L3 (Beispiel).

Messwert-Weiterschaltung

Alle 10/12 Perioden werden alle Messwerte berechnet und sind einmal in der Sekunde in den Messwertanzeigen abrufbar. Für den Abruf der Messwertanzeigen stehen zwei Methoden zur Verfügung:

- Die automatisch wechselnde Darstellung von ausgewählten Messwertanzeigen, hier als Messwert-Weiterschaltung bezeichnet.
- Die Auswahl einer Messwertanzeige über die Tasten 1 und 2 aus einem vorgewählten Anzeigen-Profil.

Beide Methoden stehen gleichzeitig zur Verfügung. Die Messwert-Weiterschaltung ist dann aktiv, wenn mindestens eine Messwertanzeige und mit einer Wechselzeit größer 0 Sekunden programmiert ist.

Wird eine Taste betätigt, so kann in den Messwertanzeigen des gewählten Anzeigen-Profiles geblättert werden. Wird für etwa 60 Sekunden keine Taste betätigt, so erfolgt die Umschaltung in die Messwert-Weiterschaltung und es werden nacheinander die Messwerte aus dem gewählten Anzeigen-Wechsel-Profil programmierten Messwertanzeigen zur Anzeige gebracht.

Wechselzeit (Adr. 039)

Einstellbereich : 0 .. 60 Sekunden

Sind 0 Sekunden eingestellt, so erfolgt kein Wechsel zwischen den für die Messwert-Weiterschaltung ausgewählten Messwertanzeigen.

Die Wechselzeit gilt für alle Anzeigen-Wechsel-Profile.

Anzeigen-Wechsel-Profil (Adr. 038)

Einstellbereich: 0..3

- 0 Anzeigen-Wechsel-Profil 1, vorbelegt.
- 1 Anzeigen-Wechsel-Profil 2, vorbelegt.
- 2 Anzeigen-Wechsel-Profil 3, vorbelegt.
- 3 Anzeigen-Wechsel-Profil kundenspezifisch.

Messwertanzeigen

Nach einer Netzwiederkehr zeigt das UMG 96RM-P/ -CBM die erste Messwerttafel aus dem aktuellen Anzeigen-Profil an. Um die Auswahl der anzuzeigenden Messwerte übersichtlich zu halten, ist werkseitig nur eine Teil der zur Verfügung stehenden Messwerte für den Abruf in der Messwertanzeige vorprogrammiert. Werden andere Messwerte in der Anzeige des UMG 96RM-P/-CBM gewünscht, so kann ein anderes Anzeigen-Profil gewählt werden.

Anzeigen-Profil (Adr. 037)

Einstellbereich: 0..3

- 0 Anzeigen-Profil 1, fest vorbelegt.
- 1 Anzeigen-Profil 2, fest vorbelegt.
- 2 Anzeigen-Profil 3, fest vorbelegt.
- 3 Anzeigen-Profil kundenspezifisch.

Profil-Einstellung

In der Software GridVis sind die Profile (Anzeigen-Wechsel-Profil und Anzeigen-Wechsel-Profil) anschaulich dargestellt. Innerhalb der Software sind über die Geräte-Konfiguration die Profile einstellbar; kundenspezifische Anzeigen-Profile sind zusätzlich programmierbar.

Für die Verwendung der Software GridVis ist eine Verbindung zwischen UMG 96RM-P/ -CBM und PC über die serielle Schnittstelle (RS485) erforderlich. Hierzu ist ein Schnittstellenwandler RS485/232, Art.-Nr. 15.06.015 oder RS485/USB, Art.-Nr. 15.06.025 notwendig.

Die kundenspezifischen Profile (Anzeigen-Wechsel-Profil und Anzeigen-Profil) können nur über die Software GridVis programmiert werden.

Grad Mar 33, 153012 11-20								Si Cin Cin
Datei Bearbeiten Arnicht I	Latres, Feridae Hilfe		_		_		_	
20000	3997							
Contargent Property								
6 6	0		E 2	a.				
Dernagen Gernag	eran. Greutiaten Wei	anvetebages (pro	there is Date	i Lode von Datei				
Downey	UCD Destrikerom							
Warder	Annethering			10.00				
Phaterbardhung								
.trochiusovarianten	respon			1.1. B. 1.1				
Newindocrite	Relevante (pomung (De Anteig	e des THEse and day is	arente	wed von deser timeteken	g ben/	herd)		
Pattolungsberken	@ IN							
Adardyseptor/pastor	1.00							
Specherkonfiguration	OR							
744	malle onstaller							
Cathole and the	Anapporell sumation		reaff.2)a .			
undershare	And the advantation from the	and the local data	and a		la l			
Publico-Inaffie	Foll to a localization to represent an address front 1							
An angelor Higaration	Zait fiz subnotischen Wessperwodreel 0 🖓 🖉 (340 Sekunder, 3-abgeschalted)					10		
Bamannung der Eingänge	Jesps,Editere gewähltes Profil							
	(Anatomic and the							
	Ma Average stractures	the American and	en la					
	A1	**		**		01		- A
	(Brown)	Windows		National and		Metrolant		
	Spectrump1.1-N	Sparmane LLM		Sparmung L144		Spenning (14)		
	Spannangi,24	Sparmuni L2-N		Sparmung L241		Spanning L2-M		
	Spannang, 3-N	Sparmung LS-N		Spannung L3-N		Spannang L3-A		
	📿 Arzege áthvert 🗳	Average allow	er 🗶	Interestioners	•	CArospe als Apr	•	
	A7	82		C 2		0.2		
	Manual I	and the second		Manager and		Manage and		
	Semonal 211	former 1211		State at 1211		Semana 1241		
	Seemanel.312	Stemune L312		Scennues1312		Semone L342		
	Seemane(11-03	Scenure1113		Scene.est113		Spennes L143		
	🖂 Arzeige aktiviert 🔮	[7] Anaelge altove	e: @	[7] finanige aldiviert	٠	(2) Arcelge altitulet		
	*							
			_		-		_	
						30.11.203 10:48:59 MEZ (2	00100 THG	

Abb. Anzeige der Profil-Einstellung in der Software GridVis.

Benutzer-Passwort (Adr. 050)

Um ein versehentliches Ändern der Programmierdaten zu erschweren, kann ein Benutzer-Passwort programmiert werden. Erst nach Eingabe des korrekten Benutzer-Passwortes, ist ein Wechsel in die nachfolgenden Programmier-Menüs möglich.

Werkseitig ist kein Benutzer-Passwort vorgegeben. In diesem Fall wird das Passwort-Menü übersprungen und man gelangt sofort in das Stromwandler-Menü.

Wurde ein Benutzer-Passwort programmiert, so erscheint das Passwort-Menü mit der Anzeige "000".

Die erste Ziffer des Benutzer-Passwortes blinkt und kann mit der Taste 2 geändert werden. Betätigt man Taste 1 wird die nächste Ziffer angewählt und blinkt.

Erst wenn die richtige Zahlenkombination eingegeben wurde, gelangt man in das Programmier-Menü für den Stromwandler.

Passwort vergessen

Ist Ihnen das Passwort nicht mehr bekannt, so können Sie das Passwort nur noch über die PC-Software Grid-Vis löschen.

Verbinden Sie hierzu das UMG96RM-P/-CBM über eine geeignete Schnittstelle mit dem PC. Weitere Informationen finden Sie in der Hilfe der GridVis.

Energiezähler löschen (Adr. 507)

Die Wirk-, Schein- und Blindenergiezähler können nur gemeinsam gelöscht werden.

Um den Inhalt der Energiezähler zu löschen, muss die Adresse 507 mit "001" beschrieben werden.

 \bigcirc

Vor der Inbetriebnahme sind mögliche produktionsbedingte Inhalte der Energiezähler, Min-/Maxwerte sowie Aufzeichnungen zu löschen!

Durch das Löschen der Energiezähler gehen diese Daten im Gerät verloren. Um einen möglichen Datenverlust zu vermeiden, sollten Sie diese Messwerte vor dem Löschen mit der GridVis Software auslesen und abspeichern.

64

Drehfeldrichtung

Die Drehfeldrichtung der Spannungen und die Frequenz der Phase L1 werden in einer Anzeige dargestellt.

Die Drehfeldrichtung gibt die Phasenfolge in Drehstromnetzen an. Üblicherweise liegt ein "rechtes Drehfeld" vor. Im UMG 96RM-P/-CBM wird die Phasenfolge an den Spannungsmesseingängen geprüft und angezeigt. Eine Bewegung der Zeichenkette im Uhrzeigersinn bedeutet ein "rechtes Drehfeld" und eine Bewegung entgegen dem Uhrzeigersinn bedeutet ein "linkes Drehfeld".

Die Drehfeldrichtung wird nur dann bestimmt, wenn die Mess- und Betriebsspannungseingänge vollständig angeschlossen sind. Fehlt eine Phase oder werden zwei gleiche Phasen angeschlossen, so wird die Drehfeldrichtung nicht ermittelt und die Zeichenkette steht in der Anzeige.

Abb. Anzeige der Netzfrequenz (50.0) und der Drehfeldrichtung

Abb. Keine Drehfeldrichtung feststellbar.

LCD Kontrast (Adr. 035)

Die bevorzugte Betrachtungsrichtung für die LCD Anzeige ist von "unten". Der LCD Kontrast der LCD Anzeige kann durch den Anwender angepasst werden. Die Kontrasteinstellung ist im Bereich von 0 bis 9 in 1er Schritten möglich.

> 0 = Zeichen sehr hell 9 = Zeichen sehr dunkel

Werksseitige Voreinstellung: 5

Hintergrundbeleuchtung

Die Hintergrundbeleuchtung ermöglicht bei schlechten Sichtverhältnissen eine gute Lesbarkeit der LCD Anzeige. Die Helligkeit kann durch den Anwender in einem Bereich von 0 bis 9 in 1er Schritten gesteuert werden.

Das UMG 96RM besitzt zwei unterschiedliche Arten der Hintergrundbeleuchtung:

- Betriebsbeleuchtung und
- Standby-Beleuchtung

Betriebsbeleuchtung (Adr. 036):

Die Betriebsbeleuchtung wird durch einen Tastendruck oder beim Neustart aktiviert.

Standby-Beleuchtung (Adr. 747)

Die Aktivierung dieser Hintergrundbeleuchtung erfolgt nach einem frei wählbaren Zeitraum (Adr. 746). Wird innerhalb dieses Zeitraums keine Taste betätigt, so schaltet das Gerät in die Standby-Beleuchtung um.

Erfolgt ein Drücken der Tasten 1 - 3 wechselt das Gerät in die Betriebsbeleuchtung und der definierte Zeitraum wird neu gestartet.

Sind die Helligkeitswerte beider Beleuchtungsarten gleich, ist kein Wechsel zwischen der Hintergrund- und Standby-Beleuchtung zu erkennen.

Adr.	Beschreibung	Einstell- bereich	Vorein- stellung
036	Helligkeit bei Betriebsbeleuchtung	09	6
746	Zeitraum nach dem in die Standby-Beleuch- tung gewechselt wird	60 9999 Sek.	900 Sek.
747	Helligkeit bei Standby-Beleuchtung	09	0

0 = minimale Helligkeit, 9 = maximale Helligkeit

Zeiterfassung

Das UMG 96RM-P/-CBM erfasst die Betriebsstunden und die Gesamtlaufzeit jedes Vergleichers, wobei die Zeit

- der Betriebsstunden mit einer Auflösung von 0,1h gemessen und in Stunden angezeigt wird bzw.
- der Gesamtlaufzeit der Vergleicher in Sekunden dargestellt wird (beim Erreichen von 999999s erfolgt die Anzeige in Stunden).

Für die Abfrage über die Messwertanzeigen sind die Zeiten mit den Ziffern 1 bis 6 gekennzeichnet:

keine = Betriebsstundenzähler

1 = Gesamtlaufzeit, Vergleicher 1A 2 = Gesamtlaufzeit, Vergleicher 2A 3 = Gesamtlaufzeit, Vergleicher 1B 4 = Gesamtlaufzeit, Vergleicher 2B 5 = Gesamtlaufzeit, Vergleicher 1C 6 = Gesamtlaufzeit, Vergleicher 2C

In der Messwertanzeige können maximal 99999.9 h (=11,4 Jahre) dargestellt werden.

Betriebsstundenzähler

Der Betriebsstundenzähler misst die Zeit in der das UMG 96RM-P/-CBM Messwerte erfasst und anzeigt.

Die Zeit der Betriebsstunden wird mit einer Auflösung von 0,1h gemessen und in Stunden angezeigt. Der Betriebsstundenzähler kann nicht zurückgesetzt werden.

Gesamtlaufzeit Vergleicher

Die Gesamtlaufzeit eines Vergleichers ist die Summe aller Zeiten für die eine Grenzwertverletzung im Vergleicherergebnis stand.

Die Gesamtlaufzeiten der Vergleicher kann nur über die Software GridVis zurückgesetzt werden. Die Rücksetzung erfolgt für alle Gesamtlaufzeiten.

Abb. Messwertanzeige

Betriebsstundenzähler

Das UMG 96RM-P/-CBM zeigt im Betriebsstundenzähler die Zahl 140,8h an. Das entspricht 140 Stunden und 80 Industrieminuten. 100 Industrieminuten entsprechen 60 Minuten. In diesem Beispiel entsprechen danach die 80 Industrieminuten 48 Minuten.

Seriennummer (Adr. 754)

Die vom UMG 96RM-P/-CBM angezeigte Seriennummer ist 6 stellig und ist ein Teil der auf dem Typenschild angezeigten Seriennummer.

Die Seriennummer kann nicht geändert werden.

Anzeige Seriennummer Angabe Seriennummer auf dem Typenschild: XX00-0000

Software Release (Adr. 750)

Die Software für das UMG 96RM-P/-CBM wird kontinuierlich verbessert und erweitert. Der Softwarestand im Gerät wird mit einer 3-stelligen Nummer, der Software Release, gekennzeichnet. Die Software Release kann vom Benutzer nicht geändert werden.

"Schleppzeiger" Maxwert des Mittelwertes über n Minuten

Der "Schleppzeiger" beschreibt einen maximalen Mittelwert eines Meßwertes über eine definierte Periodendauer.

Die Einstellung der Periodendauer erfolgt über einen Parameter, über die Software GridVis oder über den Digitaleingang 1.

Hierbei wird eine Synchronisation über die interne Uhr (einstellbar über Parameter 206 oder auf die volle Stunde) oder wahlweise über den Digitaleingang 1 ausgelöst. Erfolgt die Synchronisation über den Digitaleingang, ist die Fangzeit zu setzen!

Es werden jeweils die drei höchsten Werte von 15 Kenngrößen mit Zeitstempel gespeichert. Die Maximalwerte der Kenngrößen sind zusätzlich über das Gerätedisplay aufrufbar.

Kenngrößen:

- Strom in den Einzelphasen L1.. L3
- Wirkleistung (Bezug/Lieferung) in den Einzelphasen L1.. L3
- Wirkleistung (Bezug/Lieferung), Summe
- Scheinleistung in den Einzelphasen L1...L3
- Scheinleistung, Summe

 \bigcirc

Bitte beachten Sie, dass schon **vor der Mittelung** nach positiven und negativen Werten getrennt wird! Bei der Summenberechnung werden erst die Summen der Einzelphasen berechnet, **anschließend** nach positiven und negativen

Ein Zurücksetzen der Höchstwerte erfolgt über die Funktion "Min/Maxwerte löschen" mit der Software GridVis, über Modbus oder am Display durch das Setzen des entsprechenden Parameters (Parameter 506: Einstellung von 0 auf 1).

Werten getrennt!

Adr.	Beschreibung	Einstellbereich	Vorein- stellung	
206	Periodendauer	300 3600 Sek.	900	
207	Fangzeit	1 20 Sek.	10 Sek.	
208	Konfiguration Digitaleingang 1	02	0	
	0 = interne Synchronisation 1 = externe Synchronisation (Schließer) 2 = externe Synchronisation (Öffner)			
506	Rücksetzung	0, 1	0	

Aufzeichnungen

In der werkseitigen Voreinstellung des UMG 96RM-P und UMG 96RM-CBM sind 2 Aufzeichnungen vorkonfiguriert. Die Anpassung und die Erweiterung von Aufzeichnungen erfolgt über die Software GridVis.

- Die kleinste Zeitbasis für Aufzeichnungen liegt bei 1 Minute.
- Maximal sind 4 Aufzeichnungen mit jeweils 100 Messwerten möglich.

Aufzeichnung 1:

Es werden mit der Zeitbasis von 15 Minuten folgende Messwerte aufgezeichnet:

- Spannung effektiv L1
- Spannung effektiv L2
- Spannung effektiv L3
- Strom effektiv L1
- Strom effektiv L2
- Strom effektiv L3
- Strom effektiv Summe L1..L3
- Wirkleistung L1
- Wirkleistung L2
- Wirkleistung L3
- Wirkleistung Summe L1..L3
- Scheinleistung L1
- Scheinleistung L2
- Scheinleistung L3

- Scheinleistung Summe L1..L3
- cos phi(math.) L1
- · cos phi(math.) L2
- · cos phi(math.) L3
- cos phi(math.) Summe L1..L3
- Blindleistung Grundschwingung L1
- Blindleistung Grundschwingung L2
- Blindleistung Grundschwingung L3
- Blindleistung Grundschwingung Summe L1..L3

Für jeden Messwert werden zusätzlich der Mittelwert, der Minimalwert und der Maximalwert aufgezeichnet.

Aufzeichnung 2:

Es werden mit der Zeitbasis von 1 Stunde folgende Messwerte aufgezeichnet:

- Wirkarbeit Summe L1..L3
- Induktive Blindarbeit Summe L1..L3

Inbetriebnahme

Versorgungsspannung anlegen

- Die Höhe der Versorgungsspannung für das UMG 96RM-P/-CBM ist dem Typenschild zu entnehmen.
- Nach dem Anlegen der Versorgungsspannung schaltet das UMG 96RM-P/-CBM auf die erste Messwertanzeige um.
- Erscheint keine Anzeige, so muss überprüft werden, ob die Versorgungsspannung im Nennspannungsbereich liegt.

Messspannung anlegen

- Spannungsmessungen in Netzen mit Nennspannungen über 300VAC gegen Erde müssen über Spannungswandler angeschlossen werden.
- Nach dem Anschluss der Messspannungen müssen die vom UMG 96RM-P/-CBM angezeigten Messwerte für die Spannungen L-N und L-L mit denen am Spannungsmesseingang übereinstimmen.

Achtung!

Spannungen und Ströme die außerhalb des zulässigen Messbereiches liegen können zu Personenschäden führen und das Gerät zerstören.

Messstrom anlegen

Das UMG 96RM-P/-CBM ist für den Anschluss von ../1A und ../5A Stromwandlern ausgelegt.

Über die Strommesseingänge können nur Wechselströme und keine Gleichströme gemessen werden. Schließen Sie alle Stromwandlerausgänge außer einem kurz. Vergleichen Sie die vom UMG 96RM-P/-CBM angezeigten Ströme mit dem angelegten Strom. Der vom UMG 96RM-P/-CBM angezeigte Strom muss unter Berücksichtigung des Stromwandlerübersetzungsverhältnisses mit dem Eingangsstrom übereinstimmen. In den kurzgeschlossenen Strommesseingängen muss das UMG 96RM-P/-CBM ca. null Ampere anzeigen. Das Stromwandlerverhältnis ist werkseitig auf 5/5A eingestellt und muss gegebenenfalls an die verwendeten Stromwandler angepasst werden.

Achtung!

Versorgungsspannungen, die nicht der Typenschildangabe entsprechen, können zu Fehlfunktionen und zur Zerstörung des Gerätes führen.

Acl

Achtung!

Das UMG 96RM-P/-CBM ist nicht für die Messung von Gleichspannungen geeignet.

Drehfeldrichtung

Überprüfen Sie in der Messwertanzeige des UMG 96RM-P/-CBM die Richtung des Spannungs-Drehfeldes. Üblicherweise liegt ein "rechtes" Drehfeld vor.

Phasenzuordnung prüfen

Die Zuordnung Außenleiter zu Stromwandler ist dann richtig, wenn man einen Stromwandler sekundärseitig kurzschließt und der vom UMG 96RM-P/-CBM angezeigte Strom in der dazugehörigen Phase auf 0A sinkt.

Kontrolle der Leistungsmessung

Schließen Sie alle Stromwandlerausgänge, außer einem kurz und überprüfen Sie die angezeigten Leistungen. Das UMG 96RM-P/-CBM darf nur eine Leistung in der Phase mit dem nicht kurzgeschlossenen Stromwandlereingang anzeigen. Trifft dies nicht zu, überprüfen Sie den Anschluss der Messspannung und des Messstromes.

Stimmt der Betrag der Wirkleistung aber das Vorzeichen der Wirkleistung ist negativ, so kann das zwei Ursachen haben:

- Die Anschlüsse S1(k) und S2(l) am Stromwandler sind vertauscht.
- Es wird Wirkenergie ins Netz zurückgeliefert.

Messung überprüfen

Sind alle Spannungs- und Strommesseingänge richtig angeschlossen, so werden auch die Einzel- und Summenleistungen richtig berechnet und angezeigt.

Überprüfen der Einzelleistungen

lst ein Stromwandler dem falschen Außenleiter zugeordnet, so wird auch die dazugehörige Leistung falsch gemessen und angezeigt.

Die Zuordnung Außenleiter zu Stromwandler am UMG 96RM-P/-CBM ist dann richtig, wenn keine Spannung zwischen dem Aussenleiter und dem dazugehörigen Stromwandler (primär) anliegt.

Um sicherzustellen, dass ein Außenleiter am Spannungsmesseingang dem richtigen Stromwandler zugeordnet ist, kann man den jeweiligen Stromwandler sekundärseitig kurzschließen. Die vom UMG 96RM-P/ -CBM angezeigte Scheinleistung muss dann in dieser Phase Null sein.

Wird die Scheinleistung richtig angezeigt aber die Wirkleistung mit einem "-" Vorzeichen, dann sind die Stromwandlerklemmen vertauscht oder es wird Leistung an das Energieversorgungsunternehmen geliefert.

Überprüfen der Summenleistungen

Werden alle Spannungen, Ströme und Leistungen für die jeweiligen Außenleiter richtig angezeigt, so müssen auch die vom UMG 96RM-P/-CBM gemessenen Summenleistungen stimmen. Zur Bestätigung sollten die vom UMG 96RM-P/-CBM gemessenen Summenleistungen mit den Arbeiten der in der Einspeisung sitzenden Wirk- und Blindleistungszähler verglichen werden.
RS485-Schnittstelle

Über das MODBUS RTU Protokoll mit CRC-Check an der RS485 Schnittstelle kann auf die Daten aus der Parameter- und der Messwertliste zugegriffen werden. Adressbereich: 1 .. 247 Werksseitige Voreinstellung : 1

Werkseitig ist die Geräteadresse 1 und die Baudrate auf 115,2 kbps eingestellt.

Modbus-Funktionen (Slave)

04 Read Input Registers 06 Preset Single Register 16 (10Hex) Preset Multiple Registers 23 (17Hex) Read/Write 4X Registers

Die Reihenfolge der Bytes ist High- vor Lowbyte (Motorola Format).

Übertragungsparameter:

0 0 1	
Datenbits:	8
Parität:	keine
Stopbits (UMG 96RM-P/-CBM):	2
Stopbits extern:	1 oder 2

Zahlenformate:	short	16 bit (-2 ¹⁵ 2 ¹⁵ -1)
	float	32 bit (IEEE 754)

Broadcast (Adresse 0) wird vom Gerät nicht unterstützt.

Die Telegrammlänge darf 256 Byte nicht überschreiten.

Beispiel: Auslesen der Spannung L1-N

Die Spannung L1-N ist in der Messwertliste unter der Adresse 19000 abgelegt. Die Spannung L1-N ist im FLOAT Format abgelegt.

Die Geräteadresse des UMG 96RM-P/-CBM wird hier mit Adresse = 01 angenommen.

Die "Query Message" sieht dann wie folgt aus:

Bezeichnung	Hex	Bemerkung
Geräteadresse	01	UMG 96RM, Adresse = 1
Funktion	03	"Read Holding Reg."
Startadr. Hi	4A	19000dez = 4A38hex
Startadr. Lo	38	
Anz. Werte Hi	00	2dez = 0002hex
Anz. Werte Lo	02	
Error Check	-	

Die "Response" des UMG96 RM-P/-CBM kann dann wie folgt aussehen:

Bezeichnung	Hex	Bemerkung
Geräteadresse	01	UMG 96RM, Adresse = 1
Funktion	03	
Byte Zähler	06	
Data	00	00hex = 00dez
Data	E6	E6hex = 230dez
Error Check (CRC)	-	

Die von der Adresse 19000 zurückgelesene Spannung L1-N beträgt 230V.

Installation USB-Treiber

Bei Internetzugriff bzw. Berechtigung zum automatischen Update der Treiber-Bibliothek:

Bei allen aktuellen Betriebssystemen (z. B. Windows 7) werden beim erstmaligem Anschluss des Gerätes an die USB-Schnittstelle des Computers die benötigten Treiber automatisch installiert.

- Legen Sie mindestens die Versorgungsspannung an das UMG 96RM-P/-CBM an.
- Schließen Sie das UMG 96RM-P/-CBM mit dem beiliegendem USB-Kabel an eine geeignete USB-Schnittstelle des Computers an.
- Die Installation der benötigten System-Treiber wird automatisch gestartet und ausgeführt.
- Nach erfolgreicher Installation kann das Gerät verwendet werden.

Bei fehlendem Internetzugriff bzw. fehlender Berechtigung zum automatischen Update der Treiber-Bibliothek oder bei Windows XP SP2:

• Windows-System:

Starten Sie das Setup-Programm im Ordner UMG 96RM/USB-Treiber/Windows auf der beiliegenden CD. Die benötigten Treiber werden installiert.

- *Linux-System*: Befolgen Sie die Anweisungen im Readme-File im Ordner UMG 96RM/USB-Treiber/Linux.
- Legen Sie mindestens die Versorgungsspannung an das UMG 96RM-P/-CBM an.
- Schließen Sie nach erfolgreicher Installation das UMG 96RM-P/-CBM mit dem beiliegendem USB-Kabel an eine geeignete USB-Schnittstelle des Computers an.

Kontrolle der USB-Installation

- Öffnen Sie in z. B. Windows 7 über die Systemsteuerung das Fenster Geräte und Drucker.
- Öffnen Sie die Eigenschaften des Gerätes FT232 USB UART über einen Doppelklick. In den Registern Allgemein und Hardware finden Sie weiter Informationen zum Gerät.
- Wechseln Sie in den Bereich Hardware. Unter Gerätefunktionen wird nach erfolgreicher Installation ein USB Serial Converter und ein USB Serial Port (COMx) angezeigt, wobei x den virtuellen COM-Port wiedergibt.
- Unter Windows XP finden Sie diese Informationen im Geräte-Manager im Bereich Hardware unter USB Universal Controller.
- Starten Sie die Software GridVis und binden Sie das UMG 96RM-P/-CBM über den Assistenten (*Neue Da-tei...*) ein. Nach Auswahl des Verbindungstypes (USB) und der Schnittstelle des COM-Ports (COMx, siehe oben) kann die USB-Verbindung genutzt werden.

0	Eigenschaften	von FT232R USB	UART	<u> </u>			
F	Allgemein Hardv	vare					
	FT232R USB UART						
	Gerätefunktion	ien:					
	Name		Тур				
	USB Serial	Converter	USB-Controller				
	USB Serial Port (COM4) Anschlüsse (COM & LPT)						
	Gerätefunktion	szusammenfassun	g				
	Hersteller:	FTDI					
4	Ort:	Port_#0008.Hub	_#0004				
	Gerätestatus:	Das Gerät funktio	oniert einwandfrei.				
Eigenschaften							
			OK Abbrechen Über	nehmen			

Profibus-Schnittstelle (nur UMG 96RM-P)

Profibus-Profile

Ein Profibus-Profil enthält die Daten die zwischen einem UMG und einer SPS ausgetauscht werden sollen. Über acht benutzerdefinierte und vier werkseitig vorkonfigurierte Profibus-Profile ist ein Auslesen von Messwerten und Zuständen möglich.

Sie können über ein Profibus-Profil:

- Messwerte vom UMG abrufen,
- die digitalen Ausgänge im UMG setzen,
- den Zustand der digitalen Eingänge im UMG abfragen.

Jedes Profibus-Profil kann maximal 127Bytes Daten enthalten. Müssen mehr Daten übertragen werden, so können Sie weitere Profibus-Profile anlegen.

- Jedes Profibus-Profil hat eine Profilnummer. Die Profilnummer wird von der SPS an das UMG gesendet.
- Die 8 benutzerdefinierten Profibus-Profile (Profilnummern 0..7) können Sie mit der GridVis bearbeiten.
- Werksseitig vorkonfigurierte Profibus-Profile (Profilnummer 8..11) können Sie nicht ändern.

Ausgänge / Tarife über Profibus aktivieren

Zum Setzen der Ausgänge oder der Tarife muss ein entsprechendes Profil gewählt werden. Neben der 1Byte-Variante für die Profil-Auswahl können über weitere drei Bytes

- Ausgänge geschaltet und
- Tarife und Energiezähler gesteuert werden.

Auswahl Profilnummer (1. Byte):

Byte 1 ermöglicht die Auswahl der Profibus-Profil-Nummer 0 bis 11. Der Ausgabebereich der SPS muss mindestens dieses Byte enthalten. Innerhalb des Bytes beschreiben die Bits 0 bis 3 die Profilnummer, Bit 4 bis 7 sind unbenutzt.

Beispiel: Auswahl Profil-Nummer 8 (binäre Darstellung)

Digitale Ausgänge schalten (2. Byte):

Ein Setzen bzw. Löschen der Bits in Byte 2 (Type "Profibus remote") ermöglicht das Setzen der digitalen Ausgänge 1-6. Bit 6 und 7 sind nicht belegt.

Tarife steuern (3. Byte):

Das Setzen bzw. Löschen der Bits ermöglicht eine Auswahl der Tarife 1 - 7. Bit 7 ist nicht belegt. Sind mehrere Tarife im Byte gesetzt, wird der Tarif mit dem niederwertigsten Bit gewählt. Wird Byte 3 benutzt, ist Byte 4 zu setzen!

Tarife steuern (4. Byte):

Das Setzen bzw. Löschen der Bits 0 bis 6 von Byte 4 ermöglicht eine Auswahl von Energiezählern zum eingestellten Tarif. Jedem Tarif können bis zu 7 Energiezählern zugeordnet werden.

Beispiel:	Pit: 7 6 5 4 2 2 1 0
Auswahl	BIL 70343210
Scheinarbeit	
unbenutzt	
Energiezähler für Scheinarbeit	
Energiezähler für Blindarbeit (cap.)	
Energiezähler für Blindarbeit (ind.)	
Energiezähler für Blindarbeit	
Energiezähler für Wirkarbeit (geliefert)	
Energiezähler für Wirkarbeit (bezogen)	
Energiezähler für Wirkarbeit (ohne Rückl	aufsperre)

Energiezähler / Tarife über Profibus deaktivieren

Sind Energiezähler einem Tarif zugeordnet, können diese über Byte 3 und Byte 4 (vgl. Tarife über Profibus aktivieren) deaktiviert werden. Hierbei erfolgt in Byte 3 die Auswahl des gewünschten Tarifes und in Byte 4 über das Löschen des entsprechenden Bits die Deaktivierung des Energiezählers.

Beispiel:

Ist unter Tarif 3 der Energiezähler für Wirkarbeit (bezogen) gesetzt, erfolgt die Deaktivierung des Energiezählers durch:

Byte 4: Deaktivierung Energiezähler unbenutzt Energiezähler für Scheinarbeit Energiezähler für Blindarbeit (cap.) Energiezähler für Blindarbeit (md.) Energiezähler für Wirkarbeit (geliefert) Energiezähler für Wirkarbeit (bezogen) Energiezähler für Wirkarbeit (bezogen)

Durch die Auswahl des Tarifes (Byte 3) und das Löschen des entsprechenden Bits in Byte 4 für den Energiezähler wird dieser gelöscht.

lst der Zähler gelöscht, kann dem Tarif einen neuen Energiezähler zugeordnet werden.

Bei einer gewünschten Deaktivierung des Tarifes sind zuerst die zugeordneten Energiezähler über Byte 3 und 4 zu löschen und dann der Tarif über Byte 3 zu deaktivieren.

Messwerte über Profibus auslesen

Über 4 werkseitig festgelegte und zusätzlich 8 benutzerdefinierte Profile können ausgewählte Messwerte ausgelesen werden. Hierbei besitzt jedes Profil eine eindeutige Profilnummer, mit der eine SPS die konfigurierten Messwerte eines Profils auslesen kann.

Beispiel:

Auslesen von Messwerten aus dem werkseitig vorkonfigurierten Profibus-Profil mit Nummer 8:

Das 1. Byte ist mit der Profilnummer 8 (dez) zu setzen und an das UMG 96RM-P zu senden.

Das UMG 96RM-P liefert daraufhin die Profilnummer 8 und die im Profil 8 festgelegten Messwerte zurück.

Byte 1:	
Auswahl Profilnummer 8	

Bit:	7	6	5	4	3	2	1	0	
	ل	1	Д,	Д,		1			
	Х	Х	Х	Х	1	0	0	0	

 $\overline{}$

Bei Verwendung des Gerätes in einem Profibus-System ist die Geräteadresse über den Parameter 000 zu setzen!

Die Baudrate in einem Profibus-System wird automatisch erkannt und muss NICHT über die Adresse 001 eingestellt werden!

Beispiel: Messwerte über Profibus abholen

Sie müssen mindestens ein Profibus-Profil mit der Grid-Vis festlegen und an das UMG 96RM-P übertragen.

Abb. Blockschaltbild für den Datenaustausch zwischen SPS und UMG 96RM-P.

Gerätestammdatei

Die Gerätesstammdatei, abgekürzt GSD-Datei, beschreibt die Profibus-Eigenschaften des UMG96RM-P. Die GSD-Datei wird vom Konfigurationsprogramm der SPS benötigt.

Die Gerätestammdatei für das UMG96RM-P trägt den Dateinamen "96RM0D44.GSD" und kann unter www.janitza.de abgerufen werden.

Systemvariablen

Verschiedene Systemvariablen (Messwerte) liegen in den Formaten Float und Integer (Byte-Order: Big- und Little-Endian) vor.

Diese Variablen sind vom Datentyp genau definiert und sind in der Modbus-Adressenliste aufgeführt. Eine benutzerdefinierte Skalierung und eine Konvertierung in andere Formate sind hierbei nicht möglich. Sind unterschiedliche Datentypen der Variable gefragt, muss eine alternative Darstellung der Variable (Messwert) existieren (siehe Modbus-Adressenliste).

Profil-Formate

Die Messwerte in den Profibus-Profilen Nummer 8 bis 11 haben das Format "high byte vor low byte".

Für Messwerte im Format "low byte vor high byte" muss zur Profibus-Profil-Nummer 128 addiert werden!

Werkseitig vorkonfigurierte Profile

Profibus-Profil Nummer 8

	Byte- index	Wertetyp	Werte- format	Skalierung
1	1	Spannung effektiv L1	Float	1
2	5	Spannung effektiv L2	Float	1
3	9	Spannung effektiv L3	Float	1
4	13	Spannung effektiv L1-L2	Float	1
5	17	Spannung effektiv L2-L3	Float	1
6	21	Spannung effektiv L3-L1	Float	1
7	25	Strom effektiv L1	Float	1
8	29	Strom effektiv L2	Float	1
9	33	Strom effektiv L3	Float	1
10	37	Strom effektiv L4	Float	1
11	41	Strom effektiv Summe L1L3	Float	1
12	45	Wirkleistung L1	Float	1
13	49	Wirkleistung L2	Float	1
14	53	Wirkleistung L3	Float	1
15	57	Cos phi (math.) L1	Float	1
16	61	Cos phi (math.) L2	Float	1
17	65	Cos phi (math.) L3	Float	1
18	69	Frequenz	Float	1
19	73	Wirkleistung Summe L1L3	Float	1
20	77	Blindleistung Grundschwingung Summe L1L3	Float	1
21	81	THD Spannung L1	Float	1
22	85	THD Spannung L2	Float	1
23	89	THD Spannung L3	Float	1
24	93	THD Strom L1	Float	1
25	97	THD Strom L2	Float	1
26	101	THD Strom L3	Float	1
27	105	THD Strom L4	Float	1

Profibus-Profil Nummer 9

	Byte- index	Wertetyp	Werte- format	Skalierung
1	1	Wirkarbeit Summe L1L3	Float	1
2	5	Bezogene Wirkarbeit Summe L1L3	Float	1
3	9	Gelieferte Wirkarbeit Summe L1L3	Float	1
4	13	Blindarbeit Summe L1L3	Float	1
5	17	Ind. Blindarbeit Summe L1L3	Float	1
6	21	Kap. Blindarbeit Summe L1L3	Float	1
7	25	Scheinarbeit Summe L1L3	Float	1
8	29	Wirkarbeit L1	Float	1
9	33	Wirkarbeit L2	Float	1
10	37	Wirkarbeit L3	Float	1
11	41	Induktive Blindarbeit L1	Float	1
12	45	Induktive Blindarbeit L2	Float	1
13	49	Induktive Blindarbeit L3	Float	1

 $\langle \mathcal{P} \rangle$

Die Konfiguration / Programmierung erfolgt über die Software GridVis. Für die Verwendung der Software GridVis ist eine Verbindung zwischen UMG 96RM-P und PC über eine Schnittstelle erforderlich.

Profibus-Profil Nummer 10

	Byte-	Wertetyp	Werte-	Skalierung
	index		format	
1	1	Wirkleistung L1	Float	1
2	5	Wirkleistung L2	Float	1
3	9	Wirkleistung L3	Float	1
4	13	Wirkleistung Summe L1L3	Float	1
5	17	Strom effektiv L1	Float	1
6	21	Strom effektiv L2	Float	1
7	25	Strom effektiv L3	Float	1
8	29	Strom effektiv L4	Float	1
9	33	Strom effektiv Summe L1L3	Float	1
10	37	Wirkarbeit Summe L1L3	Float	1
11	41	Cos phi (math.) L1	Float	1
12	45	Cos phi (math.) L2	Float	1
13	49	Cos phi (math.) L3	Float	1
14	53	Cos phi (math.) Summe L1L3	Float	1
15	57	Blindleistung Grundschwingung L1	Float	1
16	61	Blindleistung Grundschwingung L2	Float	1
17	65	Blindleistung Grundschwingung L3	Float	1
18	69	Blindleistung Grundschwingung Summe L1L3	Float	1
19	73	Scheinleistung L1	Float	1
20	77	Scheinleistung L2	Float	1
21	81	Scheinleistung L3	Float	1
22	85	Scheinleistung Summe L1L3	Float	1

Profibus-Profil Nummer 11

	Byte-	Wertetyp	Werte-	Skalierung
	index		format	
1	1	Spannung effektiv L1	Float	1
2	5	Spannung effektiv L2	Float	1
3	9	Spannung effektiv L3	Float	1
4	13	Strom effektiv L1	Float	1
5	17	Strom effektiv L2	Float	1
6	21	Strom effektiv L3	Float	1
7	25	Strom effektiv L4	Float	1
8	29	Wirkleistung L1	Float	1
9	33	Wirkleistung L2	Float	1
10	37	Wirkleistung L3	Float	1
11	41	Wirkleistung Summe L1L3	Float	1
12	45	Zählstand Digitaleingang 1	Integer (4 Byte)	1
13	49	Zählstand Digitaleingang 2	Integer (4 Byte)	1
14	53	Zählstand Digitaleingang 3	Integer (4 Byte)	1
15	57	Zählstand Digitaleingang 4	Integer (4 Byte)	1
16	61	Zustand Digitalausgang 1	Integer (2 Byte)	1
17	63	Zustand Digitalausgang 2	Integer (2 Byte)	1
18	65	Zustand Digitalausgang 3	Integer (2 Byte)	1
19	67	Zustand Digitalausgang 4	Integer (2 Byte)	1
20	69	Zustand Digitalausgang 5	Integer (2 Byte)	1
21	71	Zustand Digitalausgang 6	Integer (2 Byte)	1

 $\widehat{\mathcal{T}}$

Messwerte im **Ganzzahlenformat** berücksichtigen die Wandlerfaktoren nicht. Messwerte im **Floatformat** enthalten die Wandlerfaktoren: Wert im Display = Wandlerverhältnis x Wert SPS x Auflösung

Digitalausgänge

Das UMG 96RM-P bzw. UMG96RM-CBM besitzt 6 digitale Ausgänge, wobei diese in zwei Gruppen zu 2 und 4 Ausgängen unterteilt sind.

Den Digitalausgängen können wahlweise unterschiedliche Funktionen zugeordnet werden.

Die Einstellungen der Funktionen ist über die Software GridVis innerhalb des Konfigurationsmenüs zu treffen.

Digital-Ausgänge

Abb.: Digitale Ausgänge der Gruppe 1 und Gruppe 2

Abb.: Software GridVis, Konfigurationsmenü

Digitalausgänge 1 und 2 - Zustandsanzeigen

Der Zustand der Schaltausgänge von Gruppe 1 wird in der Anzeige des UMG 96RM-P/-CBM durch Kreissymbole dargestellt.

Zustände am Digitalausgang

- O Es kann ein Strom von <1mA fließen.
 Digitalausgang 1: Adr. 608 = 0
 Digitalausgang 2: Adr. 609 = 0
- Es kann ein Strom von bis zu 50mA fließen.
 Digitalausgang 1: Adr. 608 = 1
 Digitalausgang 2: Adr. 609 = 1

Da die Anzeige nur einmal pro Sekunde aktualisiert wird, können schnellere Zustandsänderungen der Ausgänge nicht angezeigt werden.

Impulsausgang

Die Digitalausgänge können auch für die Ausgabe von Impulsen zur Zählung des Energieverbrauchs genutzt werden. Dazu wird nach dem Erreichen einer bestimmten, einstellbaren Energiemenge ein Impuls von definierter Länge am Ausgang angelegt.

Um einen Digitalausgang als Impulsausgang zu verwenden, müssen Sie verschiedene Einstellungen über die Software GridVis innerhalb des Konfigurationsmenüs vornehmen.

- · Digitalausgang,
- Auswahl der Quelle,
- · Messwert-Auswahl,
- Impulslänge,
- · Impulswertigkeit.

Abb.: Software GridVis, Konfigurationsmenü

Impulslänge (Adr.106)

Die Impulslänge ist für beide Impulsausgänge gültig und wird über die Parameteradresse 106 fest eingestellt.

Einstellbereich:1 .. 10001 = 10msVoreinstellung:5= 50ms

Die typische Impulslänge für S0-Impulse beträt 30ms.

Impulspause

Die Impulspause ist mindestens so groß wie die gewählte Impulslänge.

Die Impulspause ist abhängig von der z. B. gemessenen Energie und kann Stunden oder Tage betragen.

Impulsabstand

Der Impulsabstand ist innerhalb der gewählten Einstellungen proportional zur Leistung. Aufgrund der Mindest-Impulslänge und der Mindest-Impulspause, ergeben sich für die maximale Anzahl an Impulsen pro Stunde die Werte in der Tabelle.

Impulslänge	Impulspause	Max. Impulse/h
10 ms	10 ms	180 000 Impulse/h
30 ms	30 ms	60 000 Impulse/h
50 ms	50 ms	36 000 Impulse/h
100 ms	100 ms	18 000 Impulse/h
500 ms	500 ms	3600 Impulse/h
1 s	1 s	1800 Impulse/h
10 s	10 s	180 Impulse/h

Beispiele für die maximal mögliche Impulsanzahl pro Stunde.

Messwert-Auswahl

Bei der Programmierung mit der GridVis bekommen Sie eine Auswahl von Arbeitswerten die aber aus den Leistungswerten abgeleitet sind.

Impulswertigkeit (Adr.102, 104)

Mit der Impulswertigkeit geben Sie an, wieviel Energie (Wh oder varh) einem Impuls entsprechen soll. Die Impulswertigkeit wird durch die maximale Anschlußleistung und die maximale Impulsanzahl pro Stunde bestimmt.

Wenn Sie die Impulswertigkeit mit einem positiven Vorzeichen angeben, werden nur dann Impulse ausgegeben wenn auch der Messwert ein positives Vorzeichen hat.

Wenn Sie die Impulswertigkeit mit einem negativen Vorzeichen angeben, werden nur dann Impulse ausgegeben wenn auch der Messwert ein negatives Vorzeichen hat.

Impulswortigkoit -	max. Anschlußleistung	[Wh/Impuls]
impuisweitigkeit –	max. Impulsanzahl/h	[withinipulo]

Da der Wirkenergiezähler mit Rücklaufsperre arbeitet, werden nur bei Bezug von elektrischer Energie Impulse ausgegeben.

 Da der Blindenergiezähler mit Rücklaufsperre arbeitet, werden nur bei induktiver Last Impulse ausgegeben.

90

Impulswertigkeit ermitteln

Festlegen der Impulslänge

Legen Sie die Impulslänge enstprechend den Anforderungen des angeschlossenen Impulsempfängers fest. Bei einer Impulslänge von z.B. 30 ms, kann das UMG 96RM-P/-CBM eine maximale Anzahl von 60000 Impulsen (siehe Tabelle "maximale Impulsanzahl" pro Stunde abgeben.

Ermittlung der maximalen Anschlussleistung Beispiel:

Stromwandler	= 150/5A
Spannung L-N	= max. 300 V
Leistung pro Phase	= 150 A x 300 V
	= 45 kW
Leistung bei 3 Phasen	= 45kW x 3
Maximale Anschlußleistu	ng= 135kW

Berechnen der Impulswertigkeit

Impulswertigkeit

Impulswertigkeit = Impulswertigkeit = 135kW / 60000 Imp/h Impulswertigkeit = 0.00225 kWh/Imp

= 2,25 Wh/Imp

Abb.: Anschlussbeispiel für die Beschaltung als Impulsausgang.

Bei der Verwendung der digitalen Ausgänge als Impulsausgang darf die Hilfsspannung (DC) nur eine max. Restwelligkeit von 5% besitzen.

Vergleicher und Grenzwertüberwachung

Zur Überwachung von Grenzwerten stehen 6 Vergleichergruppen (1 - 6) mit je 3 Vergleichern (A - C) zur Verfügung. Die Ergebnisse der Vergleicher A bis J können UND oder ODER verknüpft werden.

Das Verknüpfungsergebnis der Vergleichergruppe kann dem entsprechendem Digitalausgang zugewiesen werden.

Jedem Vergleichergruppen-Ausgang kann zusätzlich die Funktion "Display-Blinken" zugeordnet werden. Hierbei erfolgt bei einem aktiven Vergleicher-Ausgang ein Wechsel der Hintergrundbeleuchtung zwischen maximaler und minimaler Helligkeit.

Abb.: Software GridVis, Konfigurationsmenü

Service und Wartung

Das Gerät wird vor der Auslieferung verschiedenen Sicherheitsprüfungen unterzogen und mit einem Siegel gekennzeichnet. Wird ein Gerät geöffnet, so müssen die Sicherheitsprüfungen wiederholt werden. Eine Gewährleistung wird nur für ungeöffnete Geräte übernommen.

Instandsetzung und Kalibration

Instandsetzungsarbeiten und Kalibration können nur vom Hersteller durchgeführt werden.

Frontfolie

Die Reinigung der Frontfolie kann mit einem weichen Tuch und haushaltsüblichen Reinigungsmitteln erfolgen. Säuren und säurehaltige Mittel dürfen zum Reinigen nicht verwendet werden.

Entsorgung

Das UMG 96RM-P/-CBM kann als Elektronikschrott gemäß den gesetzlichen Bestimmungen der Wiederverwertung zugeführt werden. Die Lithiumbatterie muss getrennt entsorgt werden.

Service

Sollten Fragen auftreten, die nicht in diesem Handbuch beschrieben sind, wenden Sie sich bitte direkt an den Hersteller.

Für die Bearbeitung von Fragen benötigen wir von Ihnen unbedingt folgende Angaben:

- Gerätebezeichnung (siehe Typenschild),
- Seriennummer (siehe Typenschild),
- Software Release (siehe Messwertanzeige),
- Messspannung und Versorgungsspannung,
- genaue Fehlerbeschreibung.

Gerätejustierung

Die Geräte werden vor Auslieferung vom Hersteller justiert - eine Nachjustierung ist bei Einhaltung der Umgebungsbedingungen nicht notwendig.

Kalibrierintervalle

Nach jeweils ca. 5 Jahren wird eine Neukalibrierung vom Hersteller oder von einem akkreditiertem Labor empfohlen.

Firmwareupdate

Ist das Gerät über die RS485- oder USB-Schnittstelle mit einem Computer verbunden, so kann über die Software GridVis die Gerätefirmware aktualisiert werden.

Über die Auswahl einer geeigneten Updatedatei (Menü *Extras/Gerät aktualisieren*) und des Gerätes erfolgt die Übertragung der neuen Firmware.

Abb. Firmwareupdate-Assistent der Software GridVis

Batterie

Die interne Uhr wird aus der Versorgungsspannung gespeist. Fällt die Versorgungsspannung aus, so wird die Uhr über die Batterie versorgt. Die Uhr liefert Datum und Zeitinformationen für z.B. Aufzeichnungen, Min- und Maxwerte und Ereignisse.

Die Lebenserwartung der Batterie beträgt bei einer Lagertemperatur von +45°C mindestens 5 Jahre. Die typische Lebenserwartung der Batterie beträgt 8 bis 10 Jahre.

Ein Austausch der Batterie erfolgt über den an der Rückseite vorgesehenen Batterieeinschub. Achten Sie hierbei auf den korrekten Batterietyp und beim Wechsel dieser auf die richtige Polarisierung (Pluspol zeigt zur Geräterückseite; Minuspol zeigt zur Gerätefront)!

Weitere Informationen finden Sie im Kapitel "Austausch der Batterie".

Batteriekontroll-Funktion

Das Gerät zeigt über das Symbol "EEE" gefolgt von "bAt" und der Statusnummer den Zustand der Batterie an. Abhängig von der Statusnummer ist eine Bestätigung der Angaben vom Benutzer erforderlich. Ein Austausch der Batterie wird empfohlen.

Status	Statusbeschreibung		
EEE bAt 321	 Batterie-Kapazität liegt bei <85% Benutzerbestätigung erforderlich Meldung erscheint nach Bestätigung wöchentlich Batterie ist zu tauschen 		
EEE bAt 322	 Batterie-Kapazität liegt bei <75% Batterie-Kapazität zu gering Ist nur nach einer Netzwiederkehr fest- stellbar Batterie ist zu tauschen 		
EEE bAt 330	Batterie-Kapazität okUhr steht und muss gestellt werden		
EEE bAt 331	 Batterie-Kapazität liegt bei <85% Uhr steht und muss gestellt werden Benutzerbestätigung erforderlich Meldung erscheint nach Bestätigung wöchentlich Batterie ist zu tauschen 		
EEE bAt 332	 Batterie-Kapazität liegt bei <75% Uhr steht und muss gestellt werden Benutzerbestätigung erforderlich Meldung erscheint nach Bestätigung täglich Batterie ist zu tauschen 		

UMG 96RM-P/-CBM

Austausch der Batterie

Wird die Batterie-Kapazität mit <75% angezeigt, empfehlen wir den Austausch der Batterie.

Vorgehensweise

- 1. Vor Beginn der Arbeiten muss die Anlage und das Gerät spannungsfrei geschaltet sein.
- Ziehen Sie z. B. mit einer Spitzzange die Batterie aus dem Batteriefach. Hierzu ist kein Öffnen des Gerätes notwendig, da das Batteriefach von außen zugänglich ist (siehe Abbildung rechts).
- 4. Beachten Sie die Polung, die an der Einschuböffnung des Batteriefachs dargestellt ist und schieben Sie die Ersatzbatterie in das Batteriefach ein. Verwenden Sie hierzu eine Batterie wie Sie unter technische Daten beschrieben ist. Die Batterie muss den Sicherheitsanforderungen nach UL1642 erfüllen. Andernfalls besteht die Gefahr der Entzündung oder Explosion.
- 5. Entsorgen Sie die Altbatterie entsprechend den gesetzlichen Vorschriften.
- Setzen Sie die Anlage und das Gerät wieder in Betrieb und pr
 üfen Sie die Funktionsf
 ähigkeit des UMG 96RM-P/-CBM. Stellen Sie Datum und Uhrzeit ein.

Abb. Batterieeinschub auf der Rückseite

Fett oder Schmutz auf den Kontaktflächen bildet einen Übergangswiderstand, der die Lebensdauer der Batterie verkürzt. Fassen Sie die Batterie nur an den Rändern an.

Gefährliche Spannung!

Lebensgefahr oder schwere Verletzungsgefahr. Vor Beginn der Arbeiten sind Anlage und Gerät spannungsfrei zu schalten.

Achten Sie auf den korrekten Batterietyp und beim Wechsel dieser auf die richtige Polarisierung!

Fehlermeldungen

Das UMG 96RM-P/-CBM zeigt im Display drei verschiedene Fehlermeldungen:

- Warnungen,
- Uhren-/Batteriefehler
- schwerwiegende Fehler und
- Messbereichsüberschreitungen.

Bei Warnungen und schwerwiegenden Fehlern wird die Fehlermeldung durch das Symbol "EEE" gefolgt mit einer Fehlernummer dargestellt.

Die dreistellige Fehlernummer setzt sich aus der Fehlerbeschreibung und - falls vom UMG 96RM-P/-CBM feststellbar - einer oder mehreren Fehlerursachen zusammen.

Beispiel Fehlermeldung 911:

Die Fehlernummer setzt sich aus dem schwerwiegenden Fehler 910 und der internen Fehlerursache 0x01 zusammen.

In diesem Beispiel ist ein Fehler beim Lesen der Kalibrierung aus dem EE-PROM aufgetreten. Das Gerät muss zur Überprüfung an den Hersteller geschickt werden.

EEE

Warnungen

Warnungen sind weniger schwerwiegende Fehler und können mit der Taste 1 oder Taste 2 quittiert werden. Die Erfassung und Anzeige von Messwerten läuft weiter. Dieser Fehler wird nach jeder Spannungswiederkehr neu angezeigt.

Fehler	Fehlerbeschreibung	
EEE 500	Die Netzfrequenz konnte nicht ermittelt werden. Mödliche Lissachen:	
	Die Spannung an L1 ist zu klein. Die Netzfrequenz liegt nicht im Bereich 45 bis 65Hz.	
	Lösung: Netzfrequenz überprüfen. Festfrequenz am Gerät wählen.	

Schwerwiegende Fehler

Das Gerät muss zur Überprüfung an den Hersteller geschickt werden.

Fehler	Fehlerbeschreibung
EEE	Fehler beim Lesen der Kalibrierung.
910	

Interne Fehlerursachen

Das UMG 96RM-P/-CBM kann in manchen Fällen die Ursache für einen internen Fehler feststellen und dann mit folgendem Fehlercode melden. Das Gerät muss zur Überprüfung an den Hersteller geschickt werden.

Fehler	Fehlerbeschreibung
0x01	EEPROM antwortet nicht.
0x02	Adressbereichsüberschreitung.
0x04	Checksummenfehler.
0x08	Fehler im internen I2C-Bus.

Uhren-/Batteriefehler

Uhren- bzw. Batteriefehler werden über das Display mit dem Symbol "EEE" gefolgt von "bAt" und einer Statusnummer angezeigt. Eine erweiterte Beschreibung finden Sie im Kapitel "Batteriekontrollfunktion" und im Kapitel "Austausch der Batterie".

Abb. Uhren-/Batteriefehler mit Nummer 330 (Uhr steht und muss gestellt werden.

Messbereichsüberschreitung

Messbereichsüberschreitungen werden so lange sie vorliegen angezeigt und können nicht quittiert werden. Eine Messbereichsüberschreitung liegt dann vor, wenn mindestens einer der Spannungs- oder Strommesseingänge ausserhalb seines spezifizierten Messbereiches liegt. Mit den Pfeilen "nach oben" wird die Phase markiert in welcher die Messbereichsüberschreitung aufgetreten ist. Die entsprechende Fehlermeldung für den Strompfad I4 erfolgt laut nebenstehender Abbildung.

Die Symbole "V" und "A" zeigen, ob die Messbereichsüberschreitung im Strom- oder Spannungspfad aufgetreten ist.

Grenzwerte für Messbereichsüberschreitung:

 $\begin{array}{ll} I & = \ 7 \ Aeff \\ U_{L-N} & = \ 300 \ V_{rms} \end{array}$

Beispiele

Abb.: Anzeige Messbereichsüberschreitung im Strompfad I4

Parameter Messbereichsüberschreitung

Eine weiterführende Fehlerbeschreibung wird kodiert im Parameter Messsbereichsüberschreitung (Adr. 600) nach folgendem Format abgelegt:

-											
		0x	F	F	F	F	F	F	F	F	
	Phase 1:			1		1					
	Phase 2:			2		2					
	Phase 3:			4		4					
				::							
				Stror		U L-N					

Beispiel: Fehler in Phase 2 im Strompfad:

0xF2FFFFFF

Beispiel: Fehler in Phase 3 im Spannungspfad UL-N:

0xFFF4FFFF

Vorgehen im Fehlerfall

Fehlermöglichkeit	Ursache	Abhilfe	
Keine Anzeige	Externe Sicherung für die Versorgungsspannung hat ausgelöst.	Sicherung ersetzen.	
Keine Stromanzeige	Messspannung nicht angeschlossen.	Messspannung anschließen.	
	Messstrom nicht angeschlossen.	Messstrom anschließen.	
Angezeigter Strom ist zu groß oder	Strommessung in der falschen Phase.	Anschluss überprüfen und ggf. korrigieren.	
zu kiem.	Stromwandlerfaktor falsch programmiert.	Stromwandler-Übersetzungsverhältnis am Stromwandler ablesen und programmieren.	
	Der Stromscheitelwert am Messeingang wurde durch Stromoberschwingungen überschritten.	Stromwandler mit einem größeren Stromwandler- Übersetzungsverhältnis einbauen.	
	Der Strom am Messeingang wurde unterschrit- ten.	Stromwandler mit einem kleineren Stromwandler- Übersetzungsverhältnis einbauen.	
Angezeigte Spannung ist zu klein	Messung in der falschen Phase.	Anschluss überprüfen und ggf. korrigieren.	
oder zu groß.	Spannungswandler falsch programmiert.	Spannungswandler-Übersetzungsverhältnis am Spannungswandler ablesen und programmieren.	
Angezeigte Spannung ist zu klein.	Messbereichsüberschreitung.	Spannungswandler verwenden.	
	Der Spannungsscheitelwert am Messeingang wurde durch Oberschwingungen überschritten.	Achtung! Es muss sichergestellt sein, dass die Messeingänge nicht überlastet werden.	
Phasenverschiebung ind/kap.	Strompfad ist dem falschen Spannungspfad zugeordnet.	Anschluss überprüfen und ggf. korrigieren.	
Wirkleistung Bezug / Lieferung ist vertauscht.	Mindestens ein Stromwandleranschluss ist vertauscht.	Anschluss überprüfen und ggf. korrigieren.	
	Ein Strompfad ist dem falschen Spannungspfad zugeordnet.	Anschluss überprüfen und ggf. korrigieren.	

Fehlermöglichkeit	Ursache	Abhilfe	
Wirkleistung zu klein oder zu groß.	Das programmierte Stromwandler-Übersetzungs- verhältnis ist falsch.	Stromwandler-Übersetzungsverhältnis am Stromwandler ablesen und programmieren	
	Der Strompfad ist dem falschen Spannungspfad zugeordnet.	Anschluss überprüfen und ggf. korrigieren.	
	Das programmierte Spannungswandler-Überset- zungsverhältnis ist falsch.	Spannungswandler-Übersetzungsverhältnis am Spannungswandler ablesen und programmieren.	
Ein Ausgang reagiert nicht.	Der Ausgang wurde falsch programmiert.	Programmierung überprüfen und ggf. korrigieren.	
	Der Ausgang wurde falsch angeschlossen.	Anschluss überprüfen und ggf. korrigieren.	
"EEE" im Display	Siehe Fehlermeldungen.		
"EEE bAt" im Display	Batterie-Kapazität zu gering	Siehe "Batterie-Kontrollfunktion" und "Austausch der Batterie"	
Keine Verbindung zum Gerät.	RS485 - Falsche Geräteadresse. - Unterschiedliche Bus-Geschwindigkeiten (Baudrate). - Falsches Protokoll. - Terminierung fehlt. USB - Treiber-Fehler	 Geräteadresse korrigieren. Geschwindigkeit (Baudrate) korrigieren. Protokoll korrigieren. Bus mit Abschlusswiderstand abschließen. USB-Anschluss kurzzeitig trennen Verwendung eines anderen USB-Ports Treiber neu installieren 	
Trotz obiger Maßnahmen funktioniert das Gerät nicht.	Gerät defekt.	Gerät zur Überprüfung an den Hersteller mit einer genauen Fehlerbeschreibung einschicken.	

Technische Daten

Allgemein	
Nettogewicht (mit aufgesetzten Steckverbindern)	ca. 358g
Verpackungsgewicht (inkl. Zubehör)	ca. 790g
Batterie	Typ Lithium CR2032, 3V (Zulassung nach UL 1642)
Lebensdauer der Hintergrundbeleuchtung	40000h (Hintergrundbeleuchtung reduziert sich über diese Dauer auf ca. 50%)

Transport und Lagerung Die folgenden Angaben gelten für Geräte, die in der Originalverpackung transportiert bzw. gelagert werden			
Freier Fall	1m		
Temperatur	K55 (-25°C bis +70°C)		
Relative Luftfeuchte	0 bis 90 % RH		

Umgebungsbedingungen im Betrieb	
Das UMG 96RM-CBM/-P ist für den wettergeschützten, ortsfesten Einsatz vorgesehen. Schutzklasse II nach IEC 60536 (VDE 0106, Teil 1).	
Bemessungstemperaturbereich	K55 (-10°C +55°C)
Relative Luftfeuchte	0 bis 75 % RH
Betriebshöhe	0 2000m über NN
Verschmutzungsgrad	2
Einbaulage	senkrecht
Lüftung	eine Fremdbelüftung ist nicht erforderlich.
Fremdkörper- und Wasserschutz - Front - Rückseite - Front mit Dichtung	IP40 nach EN60529 IP20 nach EN60529 IP54 nach EN60529

Versorgungsspannung		
Option 230V	Nennbereich	90V - 277V (50/60Hz) oder DC 90V - 250V; 300V CATIII
	Leistungsaufnahme	UMG 96RM-P: max. 7,5VA / 4W UMG 96RM-CBM: 6VA / 3W
Option 24V	Nennbereich	24V - 90V AC / DC; 150V CATIII
	Leistungsaufnahme	UMG 96RM-P: max. 6,5VA / 5W UMG 96RM-CBM: 5VA / 3W
Arbeitsbereich	+-10% vom Nennbereich	
Interne Sicherung, nicht austauschbar	Typ T1A / 250V/277V gemäß IEC 60127	
Empfohlene Überstromschutzeinrichtung (Zulassung nach UL)	für den Leitungsschutz	Option 230V: 6 - 16A Option 24V: 1 - 6A (Char. B)

Empfehlung zur maximalen Geräteanzahl an einem Leitungsschutzschalter: Option 230V : Leitungsschutzschalter B6A: max. 4 Geräte / Leitungsschutzschalter B16A: max. 11 Geräte Option 24V : Leitungsschutzschalter B6A: max. 3 Geräte / Leitungsschutzschalter B16A: max. 9 Geräte

Anschlussvermögen der Klemmstellen (Versorgungsspannung) Anschließbare Leiter. Pro Klemmstelle darf nur ein Leiter angeschlossen werden!	
Eindrähtige, mehrdrähtige, feindrähtige 0,2 - 2,5mm², AWG 26 - 12	
Stiftkabelschuhe, Aderendhülsen	0,2 - 2,5mm ²
Anzugsdrehmoment	0,4 - 0,5Nm
Abisolierlänge	7mm

Digitale Ausgänge 6 digitale Ausgänge, Halbleiterrelais, nicht kurzschlussfest.	
Schaltspannung	max. 33V AC, 60V DC
Schaltstrom	max. 50mAeff AC/DC
Reaktionszeit	10/12 Perioden + 10ms *
Impulsausgang (Energie-Impulse)	max. 50Hz

* Reaktionszeit z. B. bei 50 Hz: 200ms + 10ms = 210 ms

Digitale Eingänge 4 digitale Eingänge, Halbleiterrelais, nicht kurzschlussfest.	
Maximale Zählerfrequenz	20Hz
Eingangssignal liegt an	18V 28V DC (typisch 4mA)
Eingangssignal liegt nicht an	0 5V DC, Strom kleiner 0,5mA

Leitungslänge (digitale Ein-/Ausgänge)	
bis 30m	nicht abgeschirmt
größer 30m	abgeschirmt

Anschlussvermögen der Klemmstellen (digitale Ein-/Ausgänge)	
Starr/flexibel	0,14 - 1,5mm², AWG 28-16
Flexibel mit Aderendhülsen ohne Kunststoffhülse	0,20 - 1,5mm ²
Flexibel mit Aderendhülsen mit Kunststoffhülse	0,20 - 1,5mm ²
Anzugsdrehmoment	0,20 - 0,25Nm
Abisolierlänge	7mm

Serielle Schnittstelle	
RS485 - Modbus RTU/Slave	9.6kbps, 19.2kbps, 38.4kbps, 57.6 kbps, 115.2kbps
Abisolierlänge	7mm
USB (Buchse)	USB 2.0, Typ B, max. Übertragungsrate 921,6 kbps
Profibus (<i>nur UMG96RM-P</i>) - Profibus DP/V0 - Buchse	- 9,6kbps bis 12Mbps - DSub, 9-polig

Anschlussvermögen der Klemmstelle (RS485)	
Eindrähtige, mehrdrähtige, feindrähtige	0,20 - 1,5mm ²
Stiftkabelschuhe, Aderendhülsen	0,20 - 1,5mm ²
Anzugsdrehmoment	0,20 - 0,25Nm
Abisolierlänge	7mm

Spannungsmessung	
Dreiphasen 4-Leitersysteme mit Nennspannungen bis	277V/480V (+-10%)
Dreiphasen 3-Leitersysteme, ungeerdet, mit Nennspannungen bis	IT 480V (+-10%)
Überspannungskategorie	300V CAT III
Bemessungsstoßspannung	4kV
Messbereich L-N	0 ¹⁾ 300Vrms (max. Überspannung 520Vrms)
Messbereich L-L	0 ¹⁾ 520Vrms (max. Überspannung 900Vrms)
Auflösung	0,01V
Crest-Faktor	2,45 (bezogen auf den Messbereich)
Impedanz	3MΩ/Phase
Leistungsaufnahme	ca. 0,1VA
Abtastfrequenz	21,33kHz (50Hz), 25,6 kHz (60Hz) je Messkanal
Frequenz der Grundschwingung - Auflösung	45Hz 65Hz 0,01Hz

¹⁾ Das UMG 96RM-P/-CBM kann nur dann Messwerte ermitteln, wenn am Spannungsmesseingang V1 eine Spannung L1-N von größer 20Veff (4-Leitermessung) oder eine Spannung L1-L2 von größer 34Veff (3-Leitermessung) anliegt.
Strommessung I1 - I4					
Nennstrom	5A				
Messbereich	0 6Arms				
Crest-Faktor	1,98				
Auflösung	0,1mA (Display 0,01A)				
Überspannungskategorie	300V CAT II				
Bemessungsstoßspannung	2kV				
Leistungsaufnahme	ca. 0,2 VA (Ri=5mΩ)				
Überlast für 1 Sek.	120A (sinusförmig)				
Abtastfrequenz	21,33kHz (50Hz), 25,6 kHz (60Hz) je Messkanal				

Anschlussvermögen der Klemmstellen (Spannungs- und Strommessung) Anschließbare Leiter. Pro Klemmstelle darf nur ein Leiter angeschlossen werden!								
	Strom	Spannung						
Eindrähtige, mehrdrähtige, feindrähtige	0,2 - 2,5mm ² , AWG 26-12	0,08 - 4,0mm ² , AWG 28-12						
Stiftkabelschuhe, Aderendhülsen	0,2 - 2,5mm ²	0,2 - 2,5mm ²						
Anzugsdrehmoment	0,4 - 0,5Nm	0,4 - 0,5Nm						
Abisolierlänge	7mm	7mm						

Kenngrößen von Funktionen

Funktion	Symbol	Genau	uigkeitsklasse	Messbereich	Anzeigebereich
Gesamt-Wirkleistung	Р	0,55)	(IEC61557-12)	0 5,4kW	0 W 999 GW *
Gesamt-Blindleisung	QA, Qv	1	(IEC61557-12)	0 5,4 kvar	0 varh 999 Gvar *
Gesamt-Scheinleistung	SA, Sv	0,55)	(IEC61557-12)	0 5,4 kVA	0 VA 999 GVA *
Gesamt-Wirkenergie	Ea	0,5 ⁵⁾ 0,5S ⁵⁾	(IEC61557-12) (IEC62053-22)	0 5,4 kWh	0 Wh 999 GWh *
Gesamt-Blindenergie	ErA, ErV	1	(IEC61557-12)	0 5,4 kvarh	0 varh 999 Gvarh *
Gesamt-Scheinenergie	EapA, EapV	0,55)	(IEC61557-12)	0 5,4 kVAh	0 VAh 999 GVAh *
Frequenz	f	0,05	(IEC61557-12)	45 65 Hz	45,00 Hz 65,00 Hz
Phasenstrom	I	0,2	(IEC61557-12)	0 6 Arms	0 A 999 kA
Neutralleiterstrom I4 gemessen	IN	1	(IEC61557-12)	0 6 Arms	0 A 999 kA
Neutralleiterstrom berechnet	INc	1	(IEC61557-12)	0,03 25 A	0,03 A 999 kA
Spannung	U L-N	0,2	(IEC61557-12)	10 300 Vrms	0 V 999 kV
Spannung	U L-L	0,2	(IEC61557-12)	18 520 Vrms	0 V 999 kV
Leistungsfaktor	PFA, PFV	0,5	(IEC61557-12)	0,00 1.00	0,00 1,00
Kurzzeit-Flicker, Langzeitflicker	Pst, Plt	-		-	-
Spannungseinbrüche (L-N)	Udip	-		-	-
Spannungsüberhöhungen (L-N)	Uswl	-		-	-
Transiente Überspannungen	Utr	-		-	-
Spannungsunterbrechnungen	Uint	-		-	-
Spannungsunsymmetrie (L-N) ¹⁾	Unba	-		-	-
Spannungsunsymmetrie (L-N) ²⁾	Unb	-		-	-
Spannungsoberschwingungen	Uh	Kl. 1	(IEC61000-4-7)	bis 2,5 kHz	0 V 999 kV
THD der Spannung 3)	THDu	1,0	(IEC61557-12)	bis 2,5 kHz	0 % 999 %
THD der Spannung ⁴⁾	THD-Ru	-		-	-

Funktion	Symbol	Genauigkeitsklasse	Messbereich	Anzeigebereich
Strom-Oberschwingungen	lh	Kl. 1 (IEC61000-4-7)	bis 2,5 kHz	0 A 999 kA
THD des Stromes ³⁾	THDi	1,0 (IEC61557-12)	bis 2,5 kHz	0 % 999 %
THD des Stromes 4)	THD-Ri	-	-	-
Netzsignalspannung	MSV	-	-	-

1) Bezug auf die Amplitude.

Bezug auf Phase und auf Amplitude.
 Bezug auf die Grundschwingung.

4) Bezug auf den Effektivwert.

5) Genauigkeitsklasse 0,5/0,5S mit ../5A Wandler. Genauigkeitsklasse 1 mit ../1A Wandler.

* Beim Erreichen der max Gesamt-

Arbeitswerte springt die Anzeige auf 0 W zurück

Parameter- und Modbus-Adressenliste

In dem Auszug der folgenden Parameterliste stehen Einstellungen, die für den korrekten Betrieb des UMG 96RM-P/-CBM notwendig sind, wie z.B. Stromwandler und Geräteadresse. Die Werte in der Parameterliste können beschrieben und gelesen werden.

In dem Auszug der Messwertliste sind die gemessenen und berechneten Messwerte, Zustandsdaten der Ausgänge und protokollierte Werte zum Auslesen abgelegt. Eine gesamte Übersicht der Parameter und Messwerte sowie Erklärungen zu ausgewählten Messwerten sind im Dokument "Modbus-Adressenliste" auf der CD oder im Internet abgelegt.

 $\widehat{\mathcal{T}}$

Die in dieser Dokumentation aufgeführten Adressen im Bereich 0 - 800 sind direkt am Gerät einstellbar. Der Adress-Bereich ab 1000 kann ausschließlich über Modbus bearbeitet werden!

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
0	SHORT	RD/WR	-	Geräteadresse (Modbus/Profibus)	0255 (*1)	1
1	SHORT	RD/WR	kbps	Baudrate für Modbus (0=9,6kbps, 1=19,2kbps, 2=38,4kbps, 3= 57,6kbps, 4=115,2kbps)	07 (57 nur für den internen Gebrauch)	4
2	SHORT	RD/WR	-	Modbus Master 0=Slave	0, 1	0
3	SHORT	RD/WR	-	Stoppbits 0 = 1 Bit, keine Parität 1 = 2 Bits, keine Parität 2 = 1 Bit, gerade Parität 3 = 1 Bit, ungerade Parität	03	0
10	FLOAT	RD/WR	A	Stromwandler I1, primär	01000000 (*2)	5
12	FLOAT	RD/WR	A	Stromwandler I1, sek.	15	5

Tabelle 1 - Parameterliste

⁽¹⁾ Die Werte 0 und 248 bis 255 sind reserviert und dürfen nicht verwendet werden.

⁽²⁾ Der einstellbare Wert 0 ergibt keine sinnvollen Arbeitswerte und darf nicht verwendet werden.

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
14 16	FLOAT FLOAT	RD/WR RD/WR	V V	Spannungswandler V1, prim. Spannungswandler V1, sek.	01000000 ^(*2) 100, 400	400 400
18 20	FLOAT FLOAT	RD/WR RD/WR	A A	Stromwandler I2, primär Stromwandler I2, sek.	01000000 ^(*2) 15	5 5
22 24	FLOAT FLOAT	RD/WR RD/WR	V V	Spannungswandler V2, prim. Spannungswandler V2, sek.	01000000 100, 400	400 400
26 28	FLOAT FLOAT	RD/WR RD/WR	A A	Stromwandler I3, primär Stromwandler I3, sek.	01000000 15	5 5
30 32	FLOAT FLOAT	RD/WR RD/WR	V V	Spannungswandler V3, prim. Spannungswandler V3, sek.	01000000 100, 400	400 400
34	SHORT	RD/WR	Hz	Frequenzermittlung 0=Auto, 45 65=Hz	0, 45 65	0
35	SHORT	RD/WR	-	Kontrast der Anzeige 0 (niedrig), 9 (hoch)	09	5
36	SHORT	RD/WR	-	Hintergrundbeleuchtung 0 (dunkel), 9 (hell)	09	6
37	SHORT	RD/WR	-	Anzeigen-Profil 0=vorbelegtes Anzeigen-Profil 1=vorbelegtes Anzeigen-Profil 2=vorbelegtes Anzeigen-Profil 3=frei wählbares Anzeigen-Profil	03	0
38	SHORT	RD/WR	-	Anzeigen-Wechsel-Profil 02=vorbelegte Anzeigen- Wechsel-Profile 3=frei wählbares Anzeigen-Wechsel-Profil	03	0
39	SHORT	RD/WR	s	Wechselzeit	060	0
40 41 42	SHORT SHORT SHORT	RD/WR RD/WR RD/WR	- -	Mittelungszeit, I Mittelungszeit, P Mittelungszeit, U	0 8* 0 8* 0 8*	6 6 6

* 0 = 5Sek.; 1 = 10Sek.; 2 = 15Sek.; 3 = 30Sek.; 4 = 1Min.; 5 = 5Min.; 6 = 8Min.; 7 = 10Min.; 8 = 15Min.

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
45	USHORT	RD/WR	mA	Ansprechschwelle Strommessung	0200	5
50	SHORT	RD/WR	-	Passwort	0999	0 (Kein Passwort)
100	SHORT	RD/WR	-	Adresse des Messwertes,	0.32000	974
101	SHORT	RD/WR	-	Adresse des Messwertes,	032000	874
102	FLOAT	RD/WR	Wh	Impulswertigkeit,	032000	882
104	FLOAT	RD/WR	Wh	Digitalausgang 1 Impulswertigkeit,	-1000000+1000000	1000
106	SHORT	RD/WR	10ms	Digitalausgang 2 Mindestimpulslänge (1=10ms)	-1000000+1000000	1000
				Digitalausg. 1/2	11000	5 (=50ms)
206	SHORT	RD/WR	S	Periodendauer "Schleppzeiger"	3003600	900
207	SHORI	RD/WR	s	Fangzeit "Schieppzeiger"	120	10
208	SHURI	RD/WR	-	Koniig. Digitaleingang 1	02	0
				U= Interne Synchronisation		
				automo Synchronisation (Schlieber)		
500	SHOPT				2 0 (21)	. 1
501	SHORT	RD/MR		Anschlussbelegung, LL2	-3 0 +3 1)	+1
502	SHORT	RD/WR		Anschlussbelegung 113	-3.0 ±3 ¹)	+2
502	SHORT	RD/WR	_	Anschlussbelegung 1111	0.31)	1
504	SHORT	RD/WR	-	Anschlussbelegung 1112	0.31)	2
505	SHORT	RD/WR	-	Anschlussbelegung, UL3	03 1)	3
506	SHORT	RD/WR	-	Min- und Maxwerte löschen	01	0
507	SHORT	RD/WR	-	Energiezähler löschen	01	0
508	SHORT	RD/WR	-	EEPROM beschreiben erzwingen.	01	0
Hinweis	: Energiewer	te und Min-Ma	xwerte werde	en alle 5 Minuten in den EEPROM gesch	rieben.	

 $^{1)}$ 0 = der Strom- oder Spannungspfad wird nicht gemessen. $^{2)}$ Die Einstellung 8 entspricht der Einstellung 0.

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
509 510 511	SHORT SHORT SHORT	RD/WR RD/WR RD/WR	 Anschlußbild Spannung Anschlußbild Strom Relevante Spannung für THD und FFT 		08 ²⁾ 08 0, 1	0 0 0
Im Disp	lay können d	lie Spannunge 	n für THD und	d FFT als L-N oder als L-L Werte angeze	igt werden. 0=LN, 1=LL	- -
512 513 514 515 516 517	SHORT SHORT SHORT SHORT SHORT SHORT	RD/WR RD/WR RD/WR RD/WR RD/WR RD/WR	-	Jahr Monat Tag Stunde Minute Sekunde	099 012 031 024 059 059	
600	UINT	RD/WR	-	Messbereichsüberschreitung	00xFFFFFFFF	
750 754 756	SHORT SERNR SERNR	RD RD RD	-	Software Release Seriennummer Produktionsnummer		
746	SHORT	RD/WR	S	Zeitraum nach dem in die Standby- Beleuchtung gewechselt wird	60 9999	900
747	SHORT	RD/WR	S	Helligkeit der Standby-Beleuchtung	09	0

Im Display werden nur die ersten 3 Stellen (###) eines Wertes dargestellt. Werte größer 1000 werden mit "k" gekennzeichnet. Beispiel: 003k = 3000

Tabelle 2 - Modbus-Adressenliste

(häufig benötigte Messwerte)

Die in dieser Dokumentation aufgeführten Adressen im Bereich bis 800 sind direkt am Gerät einstellbar.

Für die Programmierung von Vergleichern am Gerät steht der Adress-Bereich 800-999 zur Verfügung. Die Adressen ab 1000 können ausschließlich über Modbus bearbeitet werden! Eine gesamte Übersicht der Parameter und Messwerte sowie Erklärungen zu ausgewählten Messwerten sind im Dokument "Modbus-Adressenliste" auf der CD oder im Internet abgelegt.

Modbus Adresse	Adresse über Display	Format	RD/WR	Einheit	Bemerkung
19000	808	float	RD	V	Spannung L1-N
19002	810	float	RD	V	Spannung L2-N
19004	812	float	RD	V	Spannung L3-N
19006	814	float	RD	V	Spannung L1-L2
19008	816	float	RD	V	Spannung L2-L3
19010	818	float	RD	V	Spannung L3-L1
19012	860	float	RD	A	Strom, L1
19014	862	float	RD	A	Strom, L2
19016	864	float	RD	A	Strom, L3
19018	866	float	RD	A	Vektor sum; IN=I1+I2+I3
19020	868	float	RD	W	Wirkleistung L1
19022	870	float	RD	W	Wirkleistung L2
19024	872	float	RD	W	Wirkleistung L3
19026	874	float	RD	W	Sum; Psum3=P1+P2+P3
19028	884	float	RD	VA	ScheinleistungS L1
19030	886	float	RD	VA	ScheinleistungS L2

Modbus Adresse	Adresse über Display	Format	RD/WR	Einheit	Bemerkung
19032	888	float	RD	VA	ScheinleistungS L3
19034	890	float	RD	VA	Sum; Ssum3=S1+S2+S3
19036	876	float	RD	var	Fund. Blindleistung (Netzfrequ.) Q L1
19038	878	float	RD	var	Fund. Blindleistung (Netzfrequ.) Q L2
19040	880	float	RD	var	Fund. Blindleistung (Netzfrequ.) Q L3
19042	882	float	RD	var	Sum; Qsum3=Q1+Q2+Q3
19044	820	float	RD	-	Fund. Power Faktor, CosPhi; U L1-N IL1
19046	822	float	RD	-	Fund. Power Faktor, CosPhi; U L2-N IL2
19048	824	float	RD	-	Fund. Power Faktor, CosPhi; U L3-N IL3
19050	800	float	RD	Hz	Messfrequenz
19052	-	float	RD	-	Drehfeld; 1=rechts, 0=keins, -1=links
19054	-	float	RD	Wh	Wirkarbeit L1
19056	-	float	RD	Wh	Wirkarbeit L2
19058	-	float	RD	Wh	Wirkarbeit L3
19060	-	float	RD	Wh	Wirkarbeit L1L3
19062	-	float	RD	Wh	Wirkarbeit L1, consumed
19064	-	float	RD	Wh	Wirkarbeit L2, consumed
19066	-	float	RD	Wh	Wirkarbeit L3, consumed
19068	-	float	RD	Wh	Wirkarbeit L1L3, consumed, rate 1
19070	-	float	RD	Wh	Wirkarbeit L1, delivered
19072	-	float	RD	Wh	Wirkarbeit L2, delivered
19074	-	float	RD	Wh	Wirkarbeit L3, delivered
19076	-	float	RD	Wh	Wirkarbeit L1L3, delivered
19078	-	float	RD	VAh	Scheinarbeit L1
19080	-	float	RD	VAh	Scheinarbeit L2
19082	-	float	RD	VAh	Scheinarbeit L3
19084	-	float	RD	VAh	Scheinarbeit L1L3
19086	-	float	RD	varh	Blindarbeit L1
19088	-	float	RD	varh	Blindarbeit L2
19090	-	float	RD	varh	Blindarbeit L3
19092	-	float	RD	varh	Blindarbeit L1L3

Modbus Adresse	Adresse über Display	Format	RD/WR	Einheit	Bemerkung
19094	-	float	RD	varh	Blindarbeit, induktiv, L1
19096	-	float	RD	varh	Blindarbeit, induktiv, L2
19098	-	float	RD	varh	Blindarbeit, induktiv, L3
19100	-	float	RD	varh	Blindarbeit L1L3, ind.
19102	-	float	RD	varh	Blindarbeit, kapazitiv, L1
19104	-	float	RD	varh	Blindarbeit, kapazitiv, L2
19106	-	float	RD	varh	Blindarbeit, kapazitiv, L3
19108	-	float	RD	varh	Blindarbeit L1L3, kap.
19110	836	float	RD	%	Oberschwingung, THD, U L1-N
19112	838	float	RD	%	Oberschwingung, THD, U L2-N
19114	840	float	RD	%	Oberschwingung, THD, U L3-N
19116	908	float	RD	%	Oberschwingung, THD, I L1
19118	910	float	RD	%	Oberschwingung, THD, I L2
19120	912	float	RD	%	Oberschwingung, THD, I L3

Modbus Adresse	Adresse über Display	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
20022	-	float	RD/WR	A	Stromwandler I4, primär	01000000	5
20024		float	RD/WR	A	Stromwandler I4, sekundär	15	5

Zahlenformate

Тур	Größe	Minimum	Maximum
short	16 bit	-2 ¹⁵	2 ¹⁵ -1
ushort	16 bit	0	2 ¹⁶ -1
int	32 bit	-2 ³¹	2 ³¹ -1
uint	32 bit	0	2 ³² -1
float	32 bit	IEEE 754	IEEE 754

Hinweis zum Speichern von Messwerten und Konfigurationsdaten:

- Folgende Messwerte werden spätestens alle 5 Minuten gespeichert:
 - Komparatortimer
 - S0-Zählerstände
 - Min. / Max. / Mittelwerte
 - Energiewerte
- Konfigurationsdaten werden sofort gespeichert !

Maßbilder

Alle Angaben in mm.

Rückansicht UMG 96RM-P

Seitenansicht UMG 96RM-P

mit aufgesetzten USB- und Profibusstecker

Rückansicht UMG 96RM-CBM

Seitenansicht UMG 96RM-CBM

mit aufgesetzten USB-Stecker

Ausbruchmaß

Übersicht Messwertanzeigen

124

126

Markierten Menüs werden mit der werkseitigen Voreinstellung nicht angezeigt.

Gerade und ungerade Oberschwingungen bis zur 40. Ordnung sind über die Software Grid-Vis abrufbar und können innerhalb der Software visualisiert werden.

Markierten Menüs werden mit der werkseitigen Voreinstellung nicht angezeigt.

Anschlussbeispiel

- ¹⁾ UL/IEC zugelassene Überstrom-Schutzeinrichtung (6A Char. B)
- ²⁾ UL/IEC zugelassene Überstrom-Schutzeinrichtung
 - (10A Class CC / Char. C)
- ³⁾ Kurzschlussbrücken (extern)

Kurzanleitung

Stromwandlereinstellung ändern

In den Programmier-Modus wechseln:

- Ein Wechsel in den Programmier-Modus erfolgt über. das gleichzeitige Drücken der Tasten 1 und 2 für ca. 1 Sekunde, Die Symbole für den Programmier-Modus PBG und für den Stromwandler CT erscheinen
- Mit Taste 1 wird die Auswahl bestätigt.
- Die erste Ziffer des Eingabebereiches für den Primärstrom blinkt

Primärstrom ändern

- Mit Taste 2 die blinkende Ziffer ändern
- Mit Taste 1 die nächste zu ändernde Ziffer wählen. Die für eine Änderung ausgewählte Ziffer blinkt. Blinkt die gesamte Zahl, so kann das Komma mit Taste 2 verschoben werden

Sekundärstrom ändern

- Als Sekundärstrom kann nur 1A oder 5A eingestellt werden.
- Mit Taste 1 den Sekundärstrom wählen.
- Mit Taste 2 die blinkende Ziffer ändern. Programmier-Modus verlassen
- Der Wechsel in den Anzeige-Modus erfolgt durch ein erneutes gleichzeitiges Drücken der Tasten 1 und 2 für ca. 1 Sekunde.

Stromwandlereinstellung

Programmier-Modus

Stromwandlereinstellung Sekundärstrom

Stromwandler-Symbol (nur im Programmier-Modus)

Messwerte abrufen

In den Anzeige-Modus wechseln:

- · Sollte der Programmier-Modus noch aktiv sein (Darstellung der Symbole PRG und CT im Display), wird über das aleichzeitige Drücken für ca. 1 Sekunde der Tasten 1 und 2 in den Anzeige-Modus gewechselt.
- Eine Messwertanzeige, z. B. für die Spannung, erscheint

Tastensteuerung

- Über Taste 2 erfolgt ein Wechsel der Messwertanzeigen für Strom. Spannung, Leistung usw.
- Über Taste 1 erfolgt ein Wechsel der zum Messwert gehörenden Mittelwerte. Maxwerte usw.

